Abstract. The yields of organic nitrates and of secondary organic aerosol (SOA) particle formation were measured for the reaction NO 3 +β-pinene under dry and humid conditions in the atmosphere simulation chamber SAPHIR at Research Center Jülich. These experiments were conducted at low concentrations of NO 3 (NO 3 +N 2 O 5 <10 ppb) and β-pinene (peak∼15 ppb), with no seed aerosol. SOA formation was observed to be prompt and substantial (∼50% mass yield under both dry conditions and at 60% RH), and highly correlated with organic nitrate formation. The observed gas/aerosol partitioning of organic nitrates can be simulated using an absorptive partitioning model to derive an estimated vapor pressure of the condensing nitrate species of p vap ∼5×10 −6 Torr (6.67×10 −4 Pa), which constrains speculation about the oxidation mechanism and chemical identity of the organic nitrate. Once formed the SOA in this system continues to evolve, resulting in measurable aerosol volume decrease with time. The observations of high aerosol yield from NO x -dependent oxidation of monoterpenes provide an example of a significant anthropogenic source of SOA from biogenic hydrocarbon precursors. Estimates of the NO 3 +β-pinene SOA source strength for California and the globe indicate that NO 3 reactions with monoterpenes are likely an important source (0.5-8% of the global total) of organic aerosol on regional and global scales.
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.
Abstract. Because of the climate and air quality effects of organic aerosol, it is important to quantify the influence of anthropogenic emissions on the aerosol burden, both globally and regionally, and both in terms of mass and number. Methods exist with which the fractions of organic aerosol resulting directly from anthropogenic and biogenic processes can be estimated. However, anthropogenic emissions can also lead to an enhancement in secondary organic aerosol formation from naturally emitted precursors. We term this enhanced biogenic secondary organic aerosol (eBSOA). Here, we review the mechanisms through which such an effect may occur in the atmosphere and describe a work flow via which it may be quantified, using existing measurement techniques. An examination of published data reveals support for the existence of the enhancement effect.
The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.
Abstract. Alkyl nitrates and secondary organic aerosol (SOA) produced during the oxidation of isoprene by nitrate radicals has been observed in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) chamber. A 16 h dark experiment was conducted with temperatures at 289-301 K, and maximum concentrations of 11 ppb isoprene, 62.4 ppb O 3 and 31.1 ppb NO x . We find the yield of nitrates is 70±8% from the isoprene + NO 3 reaction, and the yield for secondary dinitrates produced in the reaction of primary isoprene nitrates with NO 3 is 40±20%. We find an effective rate constant for reaction of NO 3 with the group of first generation oxidation products to be 7×10 −14 molecule −1 cm 3 s −1 . At the low total organic aerosol concentration in the chamber (max=0.52 µg m −3 ) we observed a mass yield ( SOA mass/ isoprene mass) of 2% for the entire 16 h experiment. However a comparison of the timing of the observed SOA production to a box model simulation of first and second generation oxidation products shows that the yield from the first generation products was <0.7% while the further oxidation of the initial products leads to a yield of 14% (defined as SOA/ isoprene 2x where isoprene 2x is the mass of isoprene which reacted twice with NO 3 ). The SOA yield of 14% is consistent with equilibrium partitioning of highly functionalized C 5 products of isoprene oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.