Calcitriol (1α,25-dihydroxyvitamin D3) is the active vitamin D metabolite and mediates immunological functions, which are relevant in allergy. Its therapeutic use is limited by hypercalcaemic toxicity. We have previously shown that the activation of the vitamin D receptor inhibits IgE production and that B cells can synthesize calcitriol from its precursor 25-hydroxyvitamin D3 (inactive precursor) [25(OH)D] upon antigenic stimulation. In this study, we address the impact of 25(OH)D on the development of type I sensitization and determine its role in allergen-specific immunotherapy. BALB/c mice were sensitized to OVA, under 25(OH)D-deficient or sufficient conditions. The humoral immune response over time was measured by ELISA. OVA-specific immunotherapy was established and studied in a murine model of allergic airway inflammation using lung histology, pulmonary cytokine expression analysis, and functional parameters in isolated and perfused mouse lungs. In 25(OH)D-deficient mice, OVA-specific IgE and IgG1 serum concentrations were increased compared with control mice. OVA-specific immunotherapy reduced the humoral immune reaction after OVA recall dose-dependently. Coadministration of 25(OH)D in the context of OVA-specific immunotherapy reduced the allergic airway inflammation and responsiveness upon OVA challenge. These findings were paralleled by reduced Th2 cytokine expression in the lungs. In conclusion, 25(OH)D deficiency promotes the development of type I sensitization and correction of its serum concentrations enhances the benefit of specific immunotherapy.
The vitamin D receptor participates in the control of IgE class-switch recombination in B cells. The physiologic vitamin D receptor agonist, 1,25(OH)D (calcitriol), is synthesized by the essential enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1), which can be expressed by activated immune cells. The role of endogenous calcitriol synthesis for the regulation of IgE has not been proven. In this study, we investigated IgE-responses in -knockout (KO) mice following sensitization to OVA or intestinal infection with Specific Igs and plasmablasts were determined by ELISA and ELISpot, expression was measured by quantitative PCR. The data show elevated specific IgE and IgG1 concentrations in the blood of OVA-sensitizedKO mice compared with wild-type littermates (+898 and +219%). Accordingly, more OVA-specific IgG1-secreting cells are present in spleen and fewer in the bone marrow of -KO mice. Ag-specific mechanisms are suggested as the leucopoiesis is in general unchanged and activated murine B and T lymphocytes express Accordingly, elevated specific IgE concentrations in the blood of sensitized T cell-specific -KO mice support a lymphocyte-driven mechanism. In an independent IgE-inducing model, i.e., intestinal infection with, we validated the increase of total and specific IgE concentrations of -KO compared with wild-type mice, but not those of IgG1 or IgA. We conclude that endogenous calcitriol has an impact on the regulation of IgE in vivo. Our data provide genetic evidence supporting previous preclinical and clinical findings and suggest that vitamin D deficiency not only promotes bone diseases but also type I sensitization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.