Cellular plasticity of cancer cells is often associated with phenotypic heterogeneity and drug resistance and thus remains a major challenge for the treatment of melanoma and other types of cancer. Melanoma cells have the capacity to switch their phenotype during tumor progression, from a proliferative and differentiated phenotype to a more invasive and dedifferentiated phenotype. However, the molecular mechanisms driving this phenotype switch are not yet fully understood. Considering that cellular heterogeneity within the tumor contributes to the high plasticity typically observed in melanoma, it is crucial to generate suitable models to investigate this phenomenon in detail. Here, we discuss the use of complete and partial reprogramming into induced pluripotent cancer (iPC) cells as a tool to obtain new insights into melanoma cellular plasticity. We consider this a relevant topic due to the high plasticity of melanoma cells and its association with a strong resistance to standard anticancer treatments.
Metastatic melanoma is an aggressive skin cancer and associated with a poor prognosis. In clinical terms, targeted therapy is one of the most important treatments for patients with BRAF V600E -mutated advanced melanoma. However, the development of resistance to this treatment compromises its therapeutic success. We previously demonstrated that forkhead box D1 (FOXD1) regulates melanoma migration and invasion. Here, we found that FOXD1 was highly expressed in melanoma cells and was associated with a poor survival of patients with metastatic melanoma. Upregulation of FOXD1 expression enhanced melanoma cells' resistance to vemurafenib (BRAF inhibitor [BRAFi]) or vemurafenib and cobimetinib (MEK inhibitor) combination treatment whereas loss of FOXD1 increased the sensitivity to treatment. By comparing gene expression levels between FOXD1 knockdown (KD) and overexpressing (OE) cells, we identified the connective tissue growth factor (CTGF) as a downstream factor of FOXD1. Chromatin immunoprecipitation and luciferase assay demonstrated the direct binding of FOXD1 to the CTGF promoter. Similar to FOXD1, knockdown of CTGF increased the sensitivity of BRAFi-resistant cells to vemurafenib. FOXD1 KD cells treated with recombinant CTGF protein were less sensitive towards vemurafenib compared to untreated FOXD1 KD cells. Based on these findings, we conclude that FOXD1 might be a promising new diagnostic marker and a therapeutic target for the treatment of targeted therapy resistant melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.