Telomere length (TL) is a candidate biomarker of ageing and phenotypic quality, but little is known of the (physiological) causes of TL variation. We previously showed that individual common terns Sterna hirundo with high reproductive success had short telomeres independent of age, and this pattern was particularly strong in the longer telomeres of the within-individual TL distribution. To test whether this relation can be attributed to effects of reproductive effort, we investigated baseline corticosterone in relation to reproductive success (number of fledglings) and TL. In this context, we assume that variation in baseline corticosterone can be interpreted as index of energy expenditure and allostatic load. Males with higher corticosterone levels during incubation, compared between and within individuals, achieved higher reproductive success and had shorter telomeres. The effect on telomeres was more pronounced in corticosterone measured later in incubation and in the longer telomeres of the within-individual TL distribution. Female corticosterone level during incubation was neither related to reproductive success nor to TL. That we observed these effects only in males mirrors different parental roles during reproduction in the common tern, where males do most of the chick provisioning. The negative association between reproductive success and TL suggests individual differences in reproductive effort as reflected in, or mediated by, baseline corticosterone. We see this result as a promising step towards unravelling the physiological causes of variation in TL and the costs of reproduction.
In birds, reproductive success is mainly a function of skill or environmental conditions, but it can also be linked to hormone concentrations due to their effect on behavior and individual decisions made during reproduction. For example, a high prolactin concentration is required to express parental behaviors such as incubation or guarding and feeding the young. Corticosterone level, on the other hand, is related to energy allocation or stress and foraging or provisioning effort. In this study, we measured individual baseline prolactin and corticosterone between 2006 and 2012 in breeding common terns (Sterna hirundo) using blood-sucking bugs. Reproductive parameters as well as prey abundance on a local and a wider scale were also determined during this period. Baseline prolactin and corticosterone varied significantly between years, as did breeding success. At the individual level, prolactin was positively and corticosterone was negatively linked to herring and sprat abundance. At the population level, we also found a negative link between corticosterone and prey abundance, probably reflecting overall foraging conditions. High prolactin during incubation was mainly predictive of increased hatching success, potentially by supporting more constant incubation and nest-guarding behavior. It was also positively linked to a lesser extent with fledging success, which could indicate a high feeding rate of young. Corticosterone concentration was positively related to high breeding success, which may be due to increased foraging activity and feeding of young. In general, our study shows that baseline prolactin and corticosterone levels during incubation can predict reproductive success, despite the presence of an interval between sampling and hatching or fledging of young.
Hormones are involved in reproductive decisions, linking environmental cues and body condition and adapting behavior. Mass loss is often accompanied by decreased prolactin and increased corticosterone concentrations, influencing incubation and brooding behavior and ultimately triggering nest desertion. Using blood-sucking bugs (Dipetalogaster maxima), we measured baseline prolactin, corticosterone, and ketone body values in incubating common terns (Sterna hirundo) between 2006 and 2009 during energy-demanding periods: 50 pairs were sampled hungry (after an incubation bout) and again fed (after foraging). In a second approach, we sampled 57 other pairs (experienced and inexperienced birds) three times over their individual breeding period, because reproduction, especially chick rearing, is a very energy-demanding process. In line with the common physiological pattern of fasting, we found significantly lower baseline prolactin values in hungry terns, which were negatively related to mass loss over the incubation bout, whereas corticosterone and ketone body levels were marginally increased. Compared to that in the incubation phase, the prolactin level dropped after hatching of chicks in inexperienced birds, perhaps indicating lower parental expenditure. Corticosterone, on the other hand, increased after hatching in males, probably linked to higher foraging activity, as males mainly deliver food during the first days. These energy-demanding periods clearly influenced hormones and ketone bodies, maybe reinforced by the low energy margin of this small seabird species, but energy reserves were not depleted to a level affecting behavior or reproductive success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.