The emphasis of the present work was to investigate the photochemical conversion of trans- to cis-zearalenone in edible oils under real-life conditions. For quantitation purposes a cis-zearalenone standard was synthesized and characterized for its identity and purity (≥95%) by (1)H NMR, X-ray crystallography, HPLC fluorescence and mass spectrometric detection. In a sample survey of 12 edible oils (9 corn oils, 3 hempseed oils) from local supermarkets all corn oils contained trans-zearalenone (median 194 μg/kg), but no cis-zearalenone was detected. For alteration studies trans-zearalenone contaminated corn oils were exposed to sunlight over 4 and 30 weeks, revealing an obvious shift toward cis-zearalenone up to a cis/trans ratio of 9:1 by storage in colorless glass bottles. Irradiation experiments of trans-zearalenone in different organic solvents confirmed the preferred formation of cis-zearalenone possibly caused by entropic effects rather than by enthalpic entities as investigated by quantum chemical and classical force field simulations.
Zearalenone (ZEN), an estrogenic mycotoxin produced by several species of Fusarium fungi, is a common contaminant of cereal-based food worldwide. Due to frequent occurrences associated with high levels of ZEN, maize oil is a particular source of exposure. Although a European maximum level for ZEN in maize oil exists according to Commission Regulation (EC) No. 1126/2007 along with a newly developed international standard method for analysis, certified reference materials (CRM) are still not available. To overcome this lack, the first CRM for the determination of ZEN in contaminated maize germ oil (ERM®-BC715) was developed in the frame of a European Reference Materials (ERM®) project according to the requirements of ISO Guide 35. The whole process of CRM development including preparation, homogeneity and stability studies, and value assignment is presented. The assignment of the certified mass fraction was based upon an in-house study using high-performance liquid chromatography isotope dilution tandem mass spectrometry. Simultaneously, to support the in-house certification study, an interlaboratory comparison study was conducted with 13 expert laboratories using different analytical methods. The certified mass fraction and expanded uncertainty (k = 2) of ERM®-BC715 (362 ± 22) μg kg−1 ZEN are traceable to the SI. This reference material is intended for analytical quality control and contributes to the improvement of consumer protection and food safety. Graphical abstract
In the literature, it has been shown that the naturally occurring trans-zearalenone (ZEN) is transformed by ultraviolet irradiation to cis-ZEN. However, the practical relevance of this transformation in animal feeding remains unclear. The aim of the present preliminary investigation was to examine the effect of UV-irradiation on the concentration of trans-ZEN in a natural feed matrix at different dry matter contents to simulate the dry and wet feeding techniques usually applied in pig feeding. Four variants, air dry or wet ZEN-contaminated ground maize either irradiated or not were tested and analysed with conventional HPLC-FLD for trans-ZEN changes, which were further examined for cis-ZEN formation by HPLC-MS/MS. In conclusion, it could be shown that, under the investigated wet feed conditions, naturally occurring trans-ZEN was partially converted by ultraviolet irradiation to its cis counterpart. In contrast, the cis/trans isomerization seemed not to be relevant in dry maize. The consequence of this finding for practical liquid feeding systems for pigs requires further investigation. Additionally, an improvement of the analytical method for cis-ZEN determination is needed.
Pure U-[13C18]-labelled cis-zearalenone (cis-ZEA) has been prepared and characterised as internal standard (ISTD) for a reliable quantification of cis-ZEA in contaminated food and feed products. The cis-isomer of the naturally trans-configurated Fusarium mycotoxin zearalenone is often neglected. However, isomerisation easily occurs by exposure of ZEA to (UV-)light. Thus, the applicability of the new cis-ZEA ISTD was demonstrated in a long-term isomerisation study comparing naturally trans-ZEA-contaminated edible oil with spiked edible oil. To estimate the benefits of the newly prepared cis-ZEA ISTD, various approaches to quantify cis-ZEA by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) were compared. As a result, a significant bias was revealed if no appropriate cis-ZEA standards are used. Furthermore, the new ISTD was applied to the analysis of 15 edible oils by stable isotope dilution analysis in combination with HPLC-electrospray ionisation-MS/MS. One of the maize germ oils showed the presence of cis-ZEA above LOD (≯0.3 μg/kg), whereas two out of 15 maize germ oils were found to be contaminated with trans-ZEA (range 17.0-31.0 μg/kg).
Three chromatographic procedures were investigated regarding their potential for the quantification of aniline and 19 of its methylated and chlorinated derivatives in groundwater. These methods were based on liquid-liquid-extraction in combination with gas chromatography and single quadrupole mass spectrometry (GC/MS) according to German standard DIN 38407-16:1999 and its extension using tandem mass spectrometry (GC/MS-MS), both following liquid-liquid extraction, and as third alternative the direct injection of the water sample into a liquid chromatograph coupled to tandem mass spectrometry (LC/MS-MS). Results were compared using fortified water and real-world contaminated groundwater used in an interlaboratory comparison. It could be shown that GC/MS and GC/ MS-MS yielded results deviating less than 10% from each other, while all three procedures displayed quantification results deviating less than 15% from the intercomparison reference values in case of each analyte in the concentration range between 1 and 45 µg L −1 . Though GC/MS-MS displays a ten-fold higher sensitivity than single quadrupole GC/MS, the precision of both methods in the concentration range was similar. LC/MS-MS has the advantage of no further sample preparation due to direct injection and leads for methylanilines and meta-, para-substituted chloroanilines to results sufficiently equivalent to the standardised GC/MS method. However, LC/MS-MS is not suitable for ortho-chloroaniline derivatives due to significantly lower ion yields than meta-and para-substituted chloroanilines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.