The envelope protein E of the flavivirus tick-borne encephalitis (TBE) virus promotes cell entry by inducing fusion of the viral membrane with an intracellular membrane after uptake by endocytosis. This protein differs from other well-studied viral and cellular fusion proteins because of its distinct molecular architecture and apparent lack of involvement of coiled coils in the low-pH-induced structural transitions that lead to fusion. A highly conserved loop (the cd loop), which resides at the distal tip of each subunit and is mostly buried in the subunit interface of the native E homodimer at neutral pH, has been hypothesized to function as an internal fusion peptide at low pH, but this has not yet been shown experimentally. It was predicted by examination of the X-ray crystal structure of the TBE virus E protein (F. A. Rey et al., Nature 375:291-298, 1995) that mutations at a specific residue within this loop (Leu 107) would not cause the native structure to be disrupted. We therefore introduced amino acid substitutions at this position and, using recombinant subviral particles, investigated the effects of these changes on fusion and related properties. Replacement of Leu with hydrophilic amino acids strongly impaired (Thr) or abolished (Asp) fusion activity, whereas a Phe mutant still retained a significant degree of fusion activity. Liposome coflotation experiments showed that the fusion-negative Asp mutant did not form a stable interaction with membranes at low pH, although it was still capable of undergoing the structural rearrangements required for fusion. These data support the hypothesis that the cd loop may be directly involved in interactions with target membranes during fusion.Enveloped viruses enter cells by fusing their membranes with a host cell membrane, either at the cell surface or at an internal site after uptake by endocytosis. This is mediated by metastable surface proteins that undergo a triggered conformational change upon binding to a receptor or exposure to the acidic environment of the endosome, allowing a previously buried portion of the protein, the fusion peptide, to insert into the target membrane (22). Exposure and insertion of the fusion peptide is believed to be the crucial step in the initiation of the fusion process, although further conformational changes may be required for achieving the complete merger of the lipid bilayers.One structurally related group of well-characterized viral fusion proteins includes the spike proteins of influenza A and C viruses, human immunodeficiency virus and other retroviruses, paramyxoviruses, and filoviruses such as Ebola virus (for reviews, see references 44, 48, and 5). These fusion proteins require proteolytic cleavage for activity (27), and their fusion peptides reside at or near the N-terminal end of the membrane-anchored subunit. When activated by the appropriate trigger, they all adopt a characteristic six-helix rod-like structure with a long coiled coil at the trimer interface. During the formation of the core, the fusion peptide is tr...
Flaviviruses are assembled intracellularly in an immature form containing heterodimers of two envelope proteins, E and prM. Shortly before the virion exits the cell, prM is cleaved by a cellular enzyme, and this processing step can be blocked by treatment with agents that raise the pH of exocytic compartments. We carried out in vivo and in vitro studies with tick-borne encephalitis (TBE) virus to investigate the possible role of furin in this process as well as the functional consequences of prM cleavage. We found that prM in immature virions can be correctly cleaved in vitro by recombinant bovine furin but that efficient cleavage occurs only after exposure of the virion to mildly acidic pH. The data suggest that exposure to an acidic environment induces an irreversible structural change that renders the cleavage site accessible to the enzyme. Cleavage by furin in vitro resulted in biological activation, as shown by a 100-fold increase in specific infectivity, the acquisition of membrane fusion and hemagglutination activity, and the ability of the envelope proteins to undergo low-pHinduced structural rearrangements characteristic of mature virions. In vivo, prM cleavage was blocked by a furin inhibitor, and infection of the furin-deficient cell line LoVo yielded only immature virions, suggesting that furin is essential for cleavage activation of flaviviruses.
The tick-borne encephalitis (TBE) flavivirus contains two transmembrane proteins, E and M. Coexpression of E and the M precursor (prM) leads to secretion of recombinant subviral particles (RSPs). In the most common form of these RSPs, analyzed at a 19 A resolution by cryo-electron microscopy (cryo-EM), 60 copies of E pack as dimers in a T = 1 icosahedral surface lattice (outer diameter, 315 A). Fitting the high-resolution structure of a soluble E fragment into the RSP density defines interaction sites between E dimers, positions M relative to E, and allows assignment of transmembrane regions of E and M. Lateral interactions among the glycoproteins stabilize this capsidless particle; similar interactions probably contribute to assembly of virions. The structure suggests a picture for trimer association under fusion-inducing conditions.
We present a kinetic analysis of the membrane fusion activity of tick-borne encephalitis (TBE) virus and TBE-derived recombinant subviral particles (RSPs) in a liposomal model system. Fusion was monitored using a fluorescence assay involving pyrene-labeled phospholipids. Fusion was strictly dependent on low pH, with the optimum being at pH 5.3-5.5 and the threshold at pH 6.8. Fusion did not require a protein or carbohydrate receptor in the target liposomes. Preexposure to low pH of the virus alone resulted in inactivation of its fusion activity. At the optimum pH for fusion and 37 degrees C, the rate and extent of fusion were very high, with more than 50% of the virus fusing within 2 s and the final extent of fusion being 70%. Lowering of the temperature did not result in a significant decrease in the rate and extent of fusion, suggesting that TBE virus fusion is a facile process with a low activation energy, possibly due to the flat orientation of the E glycoprotein on the viral surface facilitating the establishment of direct intermembrane contact. The fusion characteristics of TBE virus and RSPs were similar, indicating that RSPs provide a reliable and convenient model for further study of the membrane fusion properties of TBE virus.
The flavivirus envelope protein E undergoes irreversible conformational changes at a mildly acidic pH which are believed to be necessary for membrane fusion in endosomes. In this study we used a combination of chemical cross-linking and sedimentation analysis to show that the envelope proteins of the flavivirus tick-borne encephalitis virus also change their oligomeric structure when exposed to a mildly acidic environment. Under neutral or slightly alkaline conditions, protein E on the surface of native virions exists as a homodimer which can be isolated by solubilization with the nonionic detergent Triton X-100. Solubilization with the same detergent after pretreatment at an acidic pH, however, yielded homotrimers rather than homodimers, suggesting that exposure to an acidic pH had induced a simultaneous weakening of dimeric contacts and a strengthening of trimeric ones. The pH threshold for the dimer-to-trimer transition was found to be 6.5. Because the pH dependence of this transition parallels that of previously observed changes in the conformation and hydrophobicity of protein E and that of virus-induced membrane fusion, it appears likely that the mechanism of fusion with endosomal membranes involves a specific rearrangement of the proteins in the viral envelope. Immature virions in which protein E is associated with the uncleaved precursor (prM) of the membrane protein M did not undergo a low-pH-induced rearrangement. This is consistent with a protective role of protein prM for protein E during intracellular transport of immature virions through acidic compartments of the trans-Golgi network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.