Diabetes increases the percentage of circulating erythrocytes exposing phosphatidylserine (PS) at the cell surface. PS-exposing erythrocytes are recognized, bound, engulfed and degraded by macrophages. Thus, PS exposure, a feature of suicidal erythrocyte death or eryptosis, accelerates clearance of affected erythrocytes from circulating blood. Moreover, PS-exposing erythrocytes bind to the vascular wall thus interfering with microcirculation. The present study explored mechanisms involved in the triggering of PS exposure by methylgloxal, an extra- and intracellular metabolite which is enhanced in diabetes. PS exposure, cell size and cytosolic Ca2+-activity after methylglyoxal treatment were measured by FACS analysis of annexin V binding, forward scatter and Fluo-3-fluorescence, respectively, and it was shown that the treatment significantly enhanced the percentage of PS-exposing erythrocytes at concentrations (0.3 µM) encountered in diabetic patients. Surprisingly, methylglyoxal did not significantly increase cytosolic Ca2+ concentration, and at concentrations up to 3 µM, did not decrease the forward scatter. Instead, exposure to methylglyoxal inhibited glycolysis thus decreasing ATP and GSH concentrations. In conclusion, methylglyoxal impairs energy production and anti-oxidative defense, effects contributing to the enhanced PS exposure of circulating erythrocytes and eventually resulting in anemia and deranged microcirculation.
The FAIR principles have been widely cited, endorsed and adopted by a broad range of stakeholders since their publication in 2016. By intention, the 15 FAIR guiding principles do not dictate specific technological implementations, but provide guidance for improving Findability, Accessibility, Interoperability and Reusability of digital resources. This has likely contributed to the broad adoption of the FAIR principles, because individual stakeholder communities can implement their own FAIR solutions. However, it has also resulted in inconsistent interpretations that carry the risk of leading to incompatible implementations. Thus, while the FAIR principles are formulated on a high level and may be interpreted and implemented in different ways, for true interoperability we need to support convergence in implementation choices that are widely accessible and (re)-usable. We introduce the concept of FAIR implementation considerations to assist accelerated global participation and convergence towards accessible, robust, widespread and consistent FAIR implementations. Any self-identified stakeholder community may either choose to reuse solutions from existing implementations, or when they spot a gap, accept the challenge to create the needed solution, which, ideally, can be used again by other communities in the future. Here, we provide interpretations and implementation considerations (choices and challenges) for each FAIR principle.
Knowledge of the neurochemical coding of submucosal neurones in the human gut is important to assess neuronal changes under pathological conditions. We therefore investigated transmitter colocalization patterns in rectal submucosal neurones in normal tissue (n=11) and in noninflamed tissue of Crohn's disease (CD) patients (n=17). Neurone-specific enolase (NSE), choline acetyltransferase (ChAT), vasoactive intestinal polypeptide (VIP), substance P (SP), nitric oxide synthase (NOS) and calcitonin gene-related peptide (CGRP) were detected immunohistochemically in whole-mount preparations from rectal biopsies. The neuronal marker NSE revealed no differences in the number of cells per ganglion (controls 5.0; CD 5.1). Four cell populations with distinct neurochemical codes were identified. The sizes of the populations ChAT/VIP (58% vs. 55%), ChAT/SP (8% vs. 8%), and ChAT/- (22% vs. 22%) were similar in control and CD. The population VIP/- was significantly increased in CD (12% vs. 2% in controls). Unlike in controls, all NOS neurones colocalized ChAT in CD. Thickened CGRP-fibres occurred in CD. We identified neurochemically distinct populations in the human submucous plexus. The increase in the VIP/- population, extensive colocalization of ChAT and NOS and hypertrophied CGRP fibres indicated adaptive changes in the enteric nervous system in noninflamed rectum of CD patients.
Hallmarks of apoptosis include cell shrinkage, which is at least partially due to cellular K+ loss. The decline of cellular K+ concentration has been suggested to participate in the triggering of apoptosis. Suicidal erythrocyte death or eryptosis is triggered by increased cytosolic Ca2+ activity leading to activation of Ca2+-sensitive K+ channels with subsequent cellular K+ loss and cell shrinkage, and to Ca2+-sensitive scambling of the cell membrane with subsequent phosphatidylserine (PS) exposure at the cell surface. Phosphatidylserine exposing erythrocytes are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. The present study explored whether cellular loss of K+ and/or cell shrinkage actively participate in the triggering of cell membrane phospholipid scrambling. Cellular K+ loss was achieved by treatment of human erythrocytes with the K+ ionophore valinomycin (1 nM) at different extracellular K+ concentrations (5-125 mM) and osmolarities (300-550m Osm). Cell volume was estimated from forward scatter and PS exposure from annexin V binding in FACS analysis. Treatment with 1 nM valinomycin indeed decreased forward scatter and increased annexin V binding. The effect was significantly blunted in the presence of staurosporine (1 µM). Increase of extracellular K+ concentration gradually blunted the decrease of forward scatter but inhibited annexin V binding only at extracellular K+ concentrations ??75 mM. An increase of extracellular osmolarity (+150 mM or 250 mM sucrose) reversed the protective effect of 75 mM KCl during valinomycin treatment. A correlation between forward scatter and annexin binding at different osmolarities and K+ concentrations suggests that the cellular K+ content determines the rate of suicidal erythrocyte death primarily through its influence on cell volume.
LSG significantly increased lower esophageal pressure independent of weight loss after LSG and may protect obese patients from gastroesophageal reflux.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.