Precision surface engineering is key to advanced biomaterials. A new platform of PEGylated styrene–maleic acid copolymers for adsorptive surface biofunctionalization is reported. Balanced amphiphilicity renders the copolymers water‐soluble but strongly affine for surfaces. Fine‐tuning of their molecular architecture provides control over adsorptive anchorage onto specific materials—which is why they are referred to as “anchor polymers” (APs)—and over structural characteristics of the adsorbed layers. Conjugatable with an array of bioactives—including cytokine‐complexing glycosaminoglycans, cell‐adhesion‐mediating peptides and antimicrobials—APs can be applied to customize materials for demanding biotechnologies in uniquely versatile, simple, and robust ways. Moreover, homo‐ and heterodisplacement of adsorbed APs provide unprecedented means of in situ alteration and renewal of the functionalized surfaces. The related options are exemplified with proof‐of‐concept experiments of controlled bacterial adhesion, human umbilical vein endothelial cell, and induced pluripotent cell growth on AP‐functionalized surfaces.
Surface Biofunctionalization In article number 2102489, Carsten Werner, Uwe Freudenberg, and co‐workers introduce a set of PEGylated styrene maleic acid(anhydride) copolymers with systematically varied molecular architecture—”anchor polymers”—and demonstrate their potentialities for adsorptive surface biofunctionalization of bulk materials.
Newly developed materials for blood-contacting devices need to undergo hemocompatibility testing to prove compliance with clinical requirements. However, many current in vitro models disregard the influence of flow conditions and blood exchange as it occurs in vivo. Here, we present a flow model which allows testing of blood-surface interactions under more physiological conditions. This modular platform consists of a triple-pump-chip and a microchannel-chip with a customizable surface. Flow conditions can be adjusted individually within the physiological range. A performance test with whole blood confirmed the hemocompatibility of our modular platform. Hemolysis was negligible, inflammation and hemostasis parameters were comparable to those detected in a previously established quasi-static whole blood screening chamber. The steady supply of fresh blood avoids secondary effects by nonphysiological accumulation of activation products. Experiments with three subsequently tested biomaterials showed results similar to literature and our own experience. The reported results suggest that our developed flow model allows the evaluation of blood-contacting materials under physiological flow conditions. By adjusting the occurring wall shear stress, the model can be adapted for selected test conditions.
Device‐associated bloodstream infections can cause serious medical problems and cost‐intensive post‐infection management, defining a need for more effective antimicrobial coatings. Newly developed coatings often show reduced bacterial colonization and high hemocompatibility in established in vitro tests, but fail in animal studies or clinical trials. The poor predictive power of these models is attributed to inadequate representation of in vivo conditions. Here, we present a new single‐pass blood flow model, with simultaneous incubation of the test surface with bacteria and freshly‐drawn human blood. The flow model is validated by comparative analysis of a recently developed set of anti‐adhesive and contact‐killing polymer coatings, and the corresponding uncoated polycarbonate surfaces. The results confirm the model's ability to differentiate the antimicrobial activities of the studied surfaces. Blood activation data correlate with bacterial surface coverage: low bacterial adhesion is associated with low inflammation and hemostasis. Shear stress correlates inversely with bacterial colonization, especially on anti‐adhesive surfaces. The introduced model is concluded to enable the evaluation of novel antimicrobial materials under in vivo‐like conditions, capturing interactions between bacteria and biomaterials surfaces in the presence of key components of the ex vivo host response.This article is protected by copyright. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.