The preparation of nanometer-sized structures of zinc oxide (ZnO) from zinc acetate and urea as raw materials was performed using conventional water bath heating and a microwave hydrothermal (MH) method in an aqueous solution. The oxide formation is controlled by decomposition of the added urea in the sealed autoclave. The influence of urea and the synthesis method on the final product formation are discussed. Broadband photoluminescence (PL) behavior in visible-range spectra was observed with a maximum peak centered in the green region which was attributed to different defects and the structural changes involved with ZnO crystals which were produced during the nucleation process.
Zn 1−x Mn x O nanostructures were synthesized via the microwave-assisted hydrothermal method, which rapidly produces particles of controlled size and morphology. Samples were analyzed considering the effects of manganese ion concentration. XRD revealed that all samples had wurtzite-type structure with Mn 2+ ions incorporated in the oxide lattice. UV−vis spectra showed absorption bands from the d−d transitions of Mn 2+ ions. As the doping concentration increased, the value of the energy gap decreased, indicating intermediary energy levels within the band gap in the Mn-doped ZnO samples. All samples produced broadband photoluminescence (PL) emissions in the yellow−orange− red range. Additionally, the PL intensity decreased with Mn 2+ ion incorporation into the ZnO lattice due to the creation of new recombination centers. Microscopy images showed that manganese in the ZnO matrix produced homogeneously distributed nanostructures. EPR results indicated two locations of Mn 2+ ions in the ZnO lattice, lower concentrations in the core of the lattice and higher concentrations at the surface.
Rapid synthesis of CO, NI CO-doped ZnO nanoparticles: Optical and electrochemical properties, Journal of Solid State Chemistry, http://dx.
AbstractWe report for the first time a rapid preparation of Zn 1-2x Co x Ni x O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green-orange-red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra.Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni codoped ZnO samples when compared to pure ZnO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.