Let K be the Cantor set. We prove that arbitrarily close to a homeomorphism T : K → K there exists a homeomorphism T : K → K such that the ω-limit of every orbit is a periodic orbit. We also prove that arbitrarily close to an endomorphism T : K → K there exists an endomorphism T : K → K with every orbit finally periodic.
RESUMODemonstramos o seguinte teorema: Seja M uma variedade Riemanniana compacta, conexa e sem bordo. Dados um endomorfismo f : M → M , uma função contínua φ : M → R e > 0, então existe um endomorfismof : M → M tal que d(f,f ) = max x∈M d(f (x),f (x)) < e existe uma medida φ−maximizante paraf que está suportada em umaórbita periódica. Este teoremaé uma generalização dos resultados obtidos por S. Addas-Zanatta e F. Tal em [41]. Palavras-chave: medida maximizante,órbita periódica, endomorfismos. ix ABSTRACT We prove the following theorem: Let M be a bondaryless, compact and connected Riemannian Manifold. Given an endomorphism f : M → M , a continuous function φ : M → R and > 0, then there exist an endomorphismf : M → M with d(f,f ) = max x∈M d(f (x),f (x)) < such that, some φ−maximizing measure forf is supported on a periodic orbit. This theorem is a generalization of the results [41] obtained by S. Addas-Zanatta and F. Tal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.