Serotonergic axons in the superficial dorsal horn were examined at the light and electron microscopic levels using an antibody specific for serotonin (5-HT). Immunoreactive 5-HT axons were most numerous in lamina I and fewest in lamina IIb. The 5-HT axons tended to orient rostrocaudally as they traveled long distances in the gray matter. Based on the size of the 5-HT varicosities along a strand of axon, at least three different types of 5-HT axons were observed at the light microscopic level. Ultrastructurally, 5-HT-immunoreactive axonal endings contained either a mixture of flattened and small oval agranular vesicles or a relatively homogeneous population of oval vesicles. 5-HT endings synapsed primarily on small caliber dendritic shafts. They also were found synapsing on large caliber dendritic shafts, dendritic spines, and neuronal cell bodies. Based on the laminar location of 5-HT axosomatic synapses and the presence of 5-HT synapses on different morphological types of dendrites, we propose that 5-HT modulates the response properties of at least three different types of neurons in the superficial dorsal horn.
Botulinum neurotoxins (BoNTs) are extremely potent neuromuscular poisons that act through soluble N-ethylmaleimidesensitive factor attachment protein receptor (SNARE) protein cleavage to inhibit neurotransmitter release. The ability of BoNT serotype A (BoNT/A) to eliminate localized transmitter release at extremely low doses is well characterized. In the current study, we investigated the less understood characteristic of BoNT/A to induce nerve outgrowth, sometimes referred to as sprouting. This phenomenon is generally considered a secondary response to the paralytic actions of BoNT/A, and other potential factors that may initiate this sprouting have not been investigated. Alternatively, we hypothesized that BoNT/A induces sprouting through presynaptic receptor activation that is independent of its known intracellular actions on the soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) synaptosomal associated protein of 25 kDa (SNAP-25). To test this, the effects of BoNT/A application on neurite outgrowth were examined using primary cultures enriched with motor neurons isolated from embryonic mouse spinal cord. In this system, BoNT/A potently stimulated neuritogenesis at concentrations as low as 0.01 nM. The neuritogenic effects of BoNT/A exposure were concentration dependent and antagonized by Triticum vulgaris lectin, a known competitive antagonist of BoNT. Similar results were observed with the isolated BoNT/A binding domain, revealing that neuritogenesis could be initiated solely by the binding actions of BoNT/A. In addition, the presence or absence of SNAP-25 cleavage by BoNT/A was not a determinant factor in BoNT/A-induced neuritogenesis. Collectively, these results suggest that binding of BoNT/A to the motor neuronal membrane activates neuritogenesis through as yet undetermined intracellular pathway(s), independent of its known action on vesicular release.
The fluorescent tracers fluoro-gold and 1,1'-dioctadecyl-3,3,3,3-tetramethyl indocarbocyanine perchlorate were used as retrograde markers to examine reciprocal connections between the rat nucleus submedius and the ventrolateral orbital cortex. In addition, midbrain projections to each of these regions were examined. In the prefrontal cortex, we found that input from the nucleus submedius terminates rostrally within the lateral and ventral areas of the ventrolateral orbital cortex. Conversely, the cortical input to the nucleus submedius originates from the medial and dorsal parts of the ventrolateral orbital cortex. Our data also demonstrated that neurons from the ventrolateral periaqueductal gray and the raphe nuclei project to the midline nuclei of the thalamus, including a small projection to the nucleus submedius. We further determined that regions within the ventrolateral periaqueductal gray and raphe nuclei project to the ventrolateral orbital cortex, and that these regions overlap with those that project to the nucleus submedius. These findings suggest that the nucleus submedius might be part of a neural circuit involved in the activation of endogenous analgesia.
The molecular targets of botulinum neurotoxins (BoNTs) are SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein-receptor) proteins necessary for neurotransmitter release. BoNT are powerful therapeutic agents in the treatment of numerous neurological disorders. The goals of this study were to (1) assess toxin diffusion by measuring substrate cleavage in adjacent and distant muscles, and (2) characterize the clinical course using SNARE protein chemistry. A small volume of BoNT/A was injected unilaterally into the mouse gastrocnemius muscle. Motor impairment was limited to the toxin-treated limb. No systemic illness or deaths occurred. At five time points, a subset of mice were killed, and muscles from both hindlimbs, and the diaphragm, were collected. Protein samples were examined for changes in SNAP-25 (synaptosomal-associated protein of Mr = 25 kDa) using immunochemistry. SNAP-25 cleavage product was noted in the toxin-treated limb as early as 1 day postinjection and continued through day 28. Onset and peak levels of substrate cleavage corresponded to the onset and peak clinical response. Cleavage was observed in adjacent and distant muscles, demonstrating that substrate cleavage is a sensitive indicator of toxin diffusion. Significant increases in full-length SNAP-25 and vesicle-associated membrane protein II were evident early in the impaired limb and continued through day 28. The increased SNARE protein most likely originates from nerve terminal sprouts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.