Purpose: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects. Experimental Design: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies. Results: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S-mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors. The lysosomal cysteine cathepsins encompass a family of closely related cysteine proteases, mediating a diverse range of proteolytic effects (1-4). However, an increasing body of evidence has shown the overexpression of a number of cysteine cathepsins in cancer (5-7). Significantly, these proteases are secreted into the tumor extracellular milieu, producing potent degradative effects on a broad range of extracellular matrix (ECM) components, including collagen and laminins (8-10). Further confirmation of these effects were provided in a murine model of sporadic pancreatic carcinogenesis (RIP1-Tag2), in which the genetic ablation of either cathepsin B or cathepsin S severally attenuated tumor invasion and angiogenesis, and cathepsin L or cathepsin B deficiency inhibited tumor proliferation (11). These observations highlight their potential as therapeutic targets in cancer treatment. Indeed, the application of synthetic broad-spectrum probes and combination therapies has successfully shown efficacy in vivo using various tumor models (12-15). However, given the roles that these proteases play in normal cellular homeostasis, an approach that selectively targets a specific cathepsin with limited normal tissue distribution may be more therapeutically attractive.Cathepsin S, unlike the ubiquitous cathepsin B and cathepsin L, exhibits a restricted tissue expression. It is found predominantly in lymphatic tissue, macrophages, and other professional antigenpresenting cells (16); mediating key steps in antigen presentation through cleavage of the invariant chain (17,18). However, the inappropriate expression of cathepsin S has also been observed in a range of tumors such as astrocytomas (19-21), prostate (22), hepatocellular (23), and pancreatic carcinomas (11). Crucially, evidence from the RIP1-T...
Background:The aim of this pilot retrospective study was to investigate the immunohistochemical expression of Cathepsin S (CatS) in three cohorts of colorectal cancer (CRC) patients (n=560).Methods:Prevalence and association with histopathological variables were assessed across all cohorts. Association with clinical outcomes was investigated in the Northern Ireland Adjuvant Chemotherapy Trial cohort (n=211), where stage II/III CRC patients were randomised between surgery-alone or surgery with adjuvant fluorouracil/folinic acid (FU/FA) treatment.Results:Greater than 95% of tumours had detectable CatS expression with significantly increased staining in tumours compared with matched normal colon (P>0.001). Increasing CatS was associated with reduced recurrence-free survival (RFS; P=0.03) among patients treated with surgery alone. Adjuvant FU/FA significantly improved RFS (hazard ratio (HR), 0.33; 95% CI, 0.12–0.89) and overall survival (OS; HR, 0.25; 95% CI, 0.08–0.81) among 36 patients with high CatS. Treatment did not benefit the 66 patients with low CatS, with a RFS HR of 1.34 (95% CI, 0.60–3.19) and OS HR of 1.33 (95% CI, 0.56–3.15). Interaction between CatS and treatment status was significant for RFS (P=0.02) and OS (P=0.04) in a multivariate model adjusted for known prognostic markers.Conclusion:These results signify that CatS may be an important prognostic biomarker and predictive of response to adjuvant FU/FA in CRC.
BackgroundAngiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development.Methodology/Principal FindingsCathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.Conclusions/SignificanceTaken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.
meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate (TMP) is a photosensitizer that can be used in photodynamic therapy (PDT) to induce cell death through generation of reactive oxygen species in targeted tumor cells. However, TMP is highly hydrophilic, and therefore, its ability to accumulate intracellularly is limited. In this study, a strategy to improve TMP uptake into cells has been investigated by encapsulating the compound in a hydrogel-based chitosan/alginate nanoparticle formulation. Nanoparticles of 560 nm in diameter entrapping 9.1 μg of TMP per mg of formulation were produced and examined in cell-based assays. These particles were endocytosed into human colorectal carcinoma HCT116 cells and elicited a more potent photocytotoxic effect than free drug. Antibodies targeting death receptor 5 (DR5), a cell surface apoptosis-inducing receptor up-regulated in various types of cancer and found on HCT116 cells, were then conjugated onto the particles. The conjugated antibodies further enhanced uptake and cytotoxic potency of the nanoparticle. Taken together, these results show that antibody-conjugated chitosan/alginate nanoparticles significantly enhanced the therapeutic effectiveness of entrapped TMP. This novel approach provides a strategy for providing targeted site-specific delivery of TMP and other photosensitizer drugs to treat colorectal tumors using PDT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.