The effects of marijuana on brain perfusion and internal timing were assessed using [15O] water PET in occasional and chronic users. Twelve volunteers who smoked marijuana recreationally about once weekly, and 12 volunteers who smoked daily for a number of years performed a self-paced counting task during PET imaging, before and after smoking marijuana and placebo cigarettes. Smoking marijuana increased rCBF in the ventral forebrain and cerebellar cortex in both groups, but resulted in significantly less frontal lobe activation in chronic users. Counting rate increased after smoking marijuana in both groups, as did a behavioral measure of self-paced tapping, and both increases correlated with rCBF in the cerebellum. Smoking marijuana appears to accelerate a cerebellar clock altering self-paced behaviors.
Using an attention task to control cognitive state, we previously found that smoking marijuana changes regional cerebral blood flow (rCBF). The present study measured rCBF during tasks requiring attention to left and right ears in different conditions. Twelve occasional marijuana users (mean age 23.5 years) were imaged with PET using [15O]water after smoking marijuana or placebo cigarettes as they performed a reaction time (RT) baseline task, and a dichotic listening task with attend-right- and attend-left-ear instructions. Smoking marijuana, but not placebo, resulted in increased normalized rCBF in orbital frontal cortex, anterior cingulate, temporal pole, insula, and cerebellum. RCBF was reduced in visual and auditory cortices. These changes occurred in all three tasks and replicated our earlier studies. They appear to reflect the direct effects of marijuana on the brain. Smoking marijuana lowered rCBF in auditory cortices compared to placebo but did not alter the normal pattern of attention-related rCBF asymmetry (i.e., greater rCBF in the temporal lobe contralateral to the direction of attention) that was also observed after placebo. These data indicate that marijuana has dramatic direct effects on rCBF, but causes relatively little change in the normal pattern of task-related rCBF on this auditory focused attention task.
The objective of this study was to evaluate the effect of the acute administration of marijuana (MJ) on cardiovascular (CV) function and CNS pharmacokinetics (PK) of [(15)O]water in occasional (O) versus chronic (C) MJ users. Each subject received four injections of [(15)O]water (one prior and three postsmoking) on two occasions in which they received active or placebo MJ. For each injection, measures of CV function and CNS PK [(15)O]water were made. Postsmoking, MJ influenced all measured CV and [(15)O]water PK parameters. C users reported significantly lower "highness" and smaller heart rate (HR) changes, which resulted in reduced rate pressure product (RPP) changes compared to O users, even though Delta(9)-tetrahydrocannabinol levels were higher, whereas changes in blood pressure (BP), arrival time, and [(15)O]water concentration were not significantly different between the groups. Significant CV changes resulted in changes in the whole-body distribution of cardiac output rather than changes in cerebral blood flow. Chronic MJ use produces tolerance to the HR increases induced by acute MJ smoking compared to changes observed in occasional users, without changing the effects on BP and [(15)O]water PK.
This study aimed to examine global and regional cerebral blood flow and amyloid burden in combat veterans with and without traumatic brain injury (TBI). Cerebral blood flow (in milliliters per minute per 100 mL) was measured by quantitative [(15)O]water, and amyloid burden was measured by [(11)C]PIB imaging. Mean global cerebral blood flow was significantly lower in veterans with TBI compared with non-TBI veterans. There were essentially no differences between groups for globally normalized regional cerebral blood flow. Amyloid burden did not differ between TBI and non-TBI veterans. Veterans who have suffered a TBI have significantly lower cerebral blood flow than non-TBI controls but did not manifest increased levels of amyloid, globally or regionally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.