Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with similar data for eusocial Hymenoptera, to better identify commonalities and differences in achieving this significant transition. We show an expansion of genes related to male fertility, with upregulated gene expression in male reproductive individuals reflecting the profound differences in mating biology relative to the Hymenoptera. For several chemoreceptor families, we show divergent numbers of genes, which may correspond to the more claustral lifestyle of these termites. We also show similarities in the number and expression of genes related to caste determination mechanisms. Finally, patterns of DNA methylation and alternative splicing support a hypothesized epigenetic regulation of caste differentiation.
Plant defence compounds occur in floral nectar, but their ecological role is not well-understood. We provide the first evidence that plant compounds pharmacologically alter pollinator behaviour by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times more likely to remember a learned floral scent than those rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar never exceeded the bees' bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success.Many drugs commonly consumed by humans are produced by plants as a form of toxic defence against herbivores (1, 2). While plant-derived drugs like caffeine or nicotine are lethal in high doses (3-5), they have pharmacological effects at low doses that affect mammalian behaviour. For example, low doses of caffeine are mildly rewarding and enhance cognitive performance and memory retention (6). Interestingly, caffeine has been detected in low doses in the floral nectar and pollen of Citrus (7), but whether it has an ecological function is unknown.Two caffeine-producing plant genera, Citrus and Coffea, have large floral displays with strong scents and produce more fruits and seeds when pollinated by bees (8, 9). If caffeine confers a selective advantage when these plants interact with pollinators, we might expect it to be commonly encountered in nectar. We measured caffeine in the nectar of 3 species of Coffea (C. canephora, C. arabica, and C. liberica) and 4 species of Citrus (C. paradisi, C. maxima, C. sinesis, C. reticulata) using liquid chromatography-mass spectrometry (10, Fig. Europe PMC Funders Group Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts S1A). When caffeine was present, its concentration ranged from 0.003 -0.253 mM. The median caffeine concentration in both genera was not significantly different (Fig. 1A, MannWhitney, Z = −1.09, P = 0.272). Caffeine was more common in the nectar of C. canephora than in C. arabica or C. liberica (Coffea: logistic regression χ 2 2 = 11.1, P = 0.004); it was always present in Citrus nectar. The mean total nectar sugar concentration ranged from 0.338-0.843 M (Fig. 1B, see Fig S1B for individual sugars). Caffeine concentration in nectar did not correlate with total sugar concentration (Pearson's r = 0.063, P = 0.596).We hypothesized that caffeine could affect the learning and memory of foraging pollinators.To test this, we trained individual honeybees to associate floral scent with 0.7 M sucrose and 7 different concentrations of caffeine and tested their olfactory memory. Using a method for classical conditioning of feeding responses (proboscis extension reflex, 11), bees...
We report the draft genome sequence of the red harvester ant, Pogonomyrmex barbatus. The genome was sequenced using 454 pyrosequencing, and the current assembly and annotation were completed in less than 1 y. Analyses of conserved gene groups (more than 1,200 manually annotated genes to date) suggest a high-quality assembly and annotation comparable to recently sequenced insect genomes using Sanger sequencing. The red harvester ant is a model for studying reproductive division of labor, phenotypic plasticity, and sociogenomics. Although the genome of P. barbatus is similar to other sequenced hymenopterans (Apis mellifera and Nasonia vitripennis) in GC content and compositional organization, and possesses a complete CpG methylation toolkit, its predicted genomic CpG content differs markedly from the other hymenopterans. Gene networks involved in generating key differences between the queen and worker castes (e.g., wings and ovaries) show signatures of increased methylation and suggest that ants and bees may have independently co-opted the same gene regulatory mechanisms for reproductive division of labor. Gene family expansions (e.g., 344 functional odorant receptors) and pseudogene accumulation in chemoreception and P450 genes compared with A. mellifera and N. vitripennis are consistent with major life-history changes during the adaptive radiation of Pogonomyrmex spp., perhaps in parallel with the development of the North American deserts.T he formation of higher-level organization from independently functioning elements has resulted in some of the most significant transitions in biological evolution (1). These include the transition from prokaryotes to eukaryotes and from uni-to multicellular organisms, as well as the formation of complex animal societies with sophisticated division of labor among individuals. In eusocial insects such as ants, distinct morphological castes specialize in either reproduction or labor (2). Currently, very little is known of the genetic basis of caste and reproductive division of labor in these societies, where individuals follow different developmental trajectories, much like distinct cell lines in an organism (3). The resulting phenotypes, queens and workers, can differ greatly in morphology, physiology, and behavior, as well as in order of magnitude differences in life span and reproductive potential (2). Ants, of all social insects, arguably exhibit the highest diversity in social complexity, such as queen number, mating frequency, and the degree of complexity of division of labor (2), and most social traits have independent origins within the ants, making them well suited to comparative genomic analyses.The sequencing of the honey bee (Apis mellifera) genome marked a milestone in sociogenomics (4, 5), facilitating research on the evolution and maintenance of sociality from its molecular building blocks. Since then, genomes of three closely related species of solitary parasitic hymenopterans, Nasonia spp., were published and similarities and differences were extensively discuss...
SummaryAvoiding toxins in food is as important as obtaining nutrition. Conditioned food aversions have been studied in animals as diverse as nematodes and humans [1, 2], but the neural signaling mechanisms underlying this form of learning have been difficult to pinpoint. Honeybees quickly learn to associate floral cues with food [3], a trait that makes them an excellent model organism for studying the neural mechanisms of learning and memory. Here we show that honeybees not only detect toxins but can also learn to associate odors with both the taste of toxins and the postingestive consequences of consuming them. We found that two distinct monoaminergic pathways mediate learned food aversions in the honeybee. As for other insect species conditioned with salt or electric shock reinforcers [4–7], learned avoidances of odors paired with bad-tasting toxins are mediated by dopamine. Our experiments are the first to identify a second, postingestive pathway for learned olfactory aversions that involves serotonin. This second pathway may represent an ancient mechanism for food aversion learning conserved across animal lineages.
Dopamine is found in the nervous systems of both vertebrates and invertebrates. However, the specific actions of dopamine depend on the dopamine receptor type that is expressed in the target cell. As in mammals, different subtypes of dopamine receptors have been cloned and characterized from invertebrates, and these receptor subtypes have different structural and functional properties. Understanding how these receptors respond to dopamine and in which cells each receptor type is expressed is key to our understanding of the role of dopamine signaling. Comparison of the amino acid sequences and experimentally determined functional properties suggest that there are at least three distinct types of dopamine receptors in invertebrates. This review focuses on invertebrate dopamine receptors for which the genes have been isolated and identified, and examines our current knowledge of the functional and structural properties of these receptors, and their pharmacology and expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.