BackgroundThe fetal brain is particularly vulnerable to intrauterine growth restriction (IUGR) conditions evidenced by neuronal and white matter abnormalities and altered neurodevelopment in the IUGR infant. To further our understanding of neurodevelopment in the newborn IUGR brain, clinically relevant models of IUGR are required. This information is critical for the design and implementation of successful therapeutic interventions to reduce aberrant brain development in the IUGR newborn. We utilise the piglet as a model of IUGR as growth restriction occurs spontaneously in the pig as a result of placental insufficiency, making it a highly relevant model of human IUGR. The purpose of this study was to characterise neuropathology and neuroinflammation in the neonatal IUGR piglet brain.MethodsNewborn IUGR (< 5th centile) and normally grown (NG) piglets were euthanased on postnatal day 1 (P1; < 18 h) or P4. Immunohistochemistry was utilised to examine neuronal, white matter and inflammatory responses, and PCR for cytokine analysis in parietal cortex of IUGR and NG piglets.ResultsThe IUGR piglet brain displayed less NeuN-positive cells and reduced myelination at both P1 and P4 in the parietal cortex, indicating neuronal and white matter disruption. A concurrent decrease in Ki67-positive proliferative cells and increase in cell death (caspase-3) in the IUGR piglet brain was also apparent on P4. We observed significant increases in the number of both Iba-1-positive microglia and GFAP-positive astrocytes in the white matter in IUGR piglet brain on both P1 and P4 compared with NG piglets. These increases were associated with a change in activation state, as noted by altered glial morphology. This inflammatory state was further evident with increased expression levels of proinflammatory cytokines (interleukin-1β, tumour necrosis factor-α) and decreased levels of anti-inflammatory cytokines (interleukin-4 and -10) observed in the IUGR piglet brains.ConclusionsThese findings suggest that the piglet model of IUGR displays the characteristic neuropathological outcomes of neuronal and white matter impairment similar to those reported in the IUGR human brain. The activated glial morphology and elevated proinflammatory cytokines is indicative of an inflammatory response that may be associated with neuronal damage and white matter disruption. These findings support the use of the piglet as a pre-clinical model for studying mechanisms of altered neurodevelopment in the IUGR newborn.
An increase in the number of activated microglia in the brain is a key feature of neuroinflammation after a hypoxic-ischemic insult to the preterm neonate and can contribute to white matter injury in the brain. Minocycline is a potent inhibitor of microglia and may have a role as a neuroprotective agent that ameliorates brain injury after hypoxia-ischemia in neonatal animal models. However to date large doses, pre-insult administration and short periods of treatment after hypoxia-ischemia have mostly been investigated in animal models making it difficult to translate minocycline's potential applicability to protect the human preterm neonatal brain exposed to hypoxia-ischemia. We investigated whether repeated doses of minocycline can minimize white matter injury and neuroinflammation one week after hypoxia-ischemia (right carotid artery ligation and 30 min 6% O(2)) in the post-natal day 3 rat pup. Two dosage regimens of minocycline were administered for one week; a high dose of 45 mg/kg 2h after hypoxia-ischemia then 22.5 mg/kg daily or a low dose 22.5 mg/kg 2h after hypoxia-ischemia then 10 mg/kg. Post-natal day 3 hypoxia-ischemia significantly reduced myelin content, numbers of O1- and O4-positive oligodendrocyte progenitor cells and increased activated microglia one week later on post-natal day 10. The low dose minocycline regimen was as effective as the high dose in ameliorating neuroinflammation after post-natal day 3 hypoxia-ischemia. However only the high dose regimen significantly attenuated reductions in O1- and O4-positive oligodendrocyte progenitor cells and myelin content. The low dose only significantly attenuated the reduction in O1-positive oligodendrocyte cell counts. Repeated, daily, post-insult treatment with minocycline abolished neuroinflammation and may provide neuroprotection to white matter for up to one week after hypoxia-ischemia in a rodent preterm model. The present findings suggest the potential clinical relevance of a repeated, daily minocycline treatment strategy, administered after a hypoxia-ischemia insult, as a therapeutic intervention for hypoxia-ischemia-affected preterm neonates.
performed the experiments and along with Grant A. Ramm analyzed the data. Diego A. Calvopina and Gunter F. Hartel performed the more advanced statistical analyses. Louise E. Ramm collected clinical data and maintained the patient database. Peter J. Lewindon assisted in study design, enrollment of patients and collection of liver tissue specimens. Charlton Noble also helped enroll patients in the study and collected tissue specimens. Daniel H. Leung provided advice on study design.
Disruption to the maternal environment during pregnancy from events such as hypoxia, stress, toxins, inflammation, and reduced placental blood flow can affect fetal development. Intrauterine growth restriction (IUGR) is commonly caused by chronic placental insufficiency, interrupting supply of oxygen and nutrients to the fetus resulting in abnormal fetal growth. IUGR is a major cause of perinatal morbidity and mortality, occurring in approximately 5-10% of pregnancies. The fetal brain is particularly vulnerable in IUGR and there is an increased risk of long-term neurological disorders including cerebral palsy, epilepsy, learning difficulties, behavioural difficulties and psychiatric diagnoses. Few studies have focused on how growth restriction interferes with normal brain development in the IUGR neonate but recent studies in growth restricted animal models demonstrate increased neuroinflammation. This review describes the role of neuroinflammation in the progression of brain injury in growth restricted neonates. Identifying the mediators responsible for alterations in brain development in the IUGR infant is key to prevention and treatment of brain injury in these infants.
Minocycline is a second-generation tetracycline and a potential neuroprotective intervention following brain injury. However, despite the recognized beneficial effects of minocycline in a multitude of adult disease states, the clinical application of minocycline in neonates is contentious. Tetracyclines, as a class, are not usually administered to neonates, but there is compelling evidence that minocycline reduces brain injury after neonatal hypoxic-ischemic brain injury. This Review focuses on the evidence for minocycline use in neonates by considering aspects of pharmacology, drug regimens, functional outcomes, and mechanisms of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.