The synthesis, structure, and reactivity of stable homoleptic heterometallic LnL4K2 complexes of divalent lanthanide ions with electron-rich tris(tert-butoxy)siloxide ligands are reported. The [Ln(OSi(OtBu)3)4K2] complexes (Ln=Eu, Yb) are stable at room temperature, but they promote the reduction of azobenzene to yield the KPhNNPh radical anion as well as the reductive cleavage of CS2 to yield CS3(2-) as the major product. The Eu(III) complex of the radical anion PhNNPh is structurally characterized. Moreover, [Yb(OSi(OtBu)3)4K2] can reduce CO2 at room temperature. Release of the reduction products in D2O shows the quantitative formation of both oxalate and carbonate in a 1:2.2 ratio. The bulky siloxide ligands enforce the labile binding of the reduction products providing the opportunity to establish a closed synthetic cycle for the Yb(II)-mediated CO2 reduction. These studies show that the presence of four electron-rich siloxide ligands renders their Eu(II) and Yb(II) complexes highly reactive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.