Prions are comprised principally of aggregates of a misfolded host protein and cause fatal transmissible neurodegenerative disorders of humans and animals, such as variant Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Prions pose significant public health concerns, including contamination of blood products and surgical instruments; require laborious and often insensitive animal bioassay to detect; and resist conventional hospital sterilization methods. A major experimental advance was the cell culture-based scrapie cell assay, allowing prion titres to be estimated more precisely and an order of magnitude faster than by animal bioassays. Here we describe a bioassay method that exploits the marked binding affinity of prions to steel surfaces. Using steel wires as a concentrating and sensitization tool and combining with an adapted scrapie cell endpoint assay we can achieve, for mouse prions, a sensitivity 100؋ higher than that achieved in standard mouse bioassays. The rapidity and sensitivity of this assay offers a major advance over small animal bioassay in many aspects of prion research. In addition, its specific application in assay of metal-bound prions allows evaluation of novel prion decontamination methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.