Small regulatory RNAs (sRNAs) in eukaryotes and bacteria play an important role in the regulation of gene expression either by binding to regulatory proteins or directly to target mRNAs. Two of the best-characterized bacterial sRNAs, Spot42 and RyhB, form a complementary pair with the ribosome binding region of their target mRNAs, thereby inhibiting translation or promoting mRNA degradation. To investigate the steady-state and dynamic potential of such sRNAs, we examine the 2 key parameters characterizing sRNA regulation: the capacity to overexpress the sRNA relative to its target mRNA and the speed at which the target mRNA is irreversibly inactivated. We demonstrate different methods to determine these 2 key parameters, for Spot42 and RyhB, which combine biochemical and genetic experiments with computational analysis. We have developed a mathematical model that describes the functional properties of sRNAs with various characteristic parameters. We observed that Spot42 and RyhB function in distinctive parameter regimes, which result in divergent mechanisms.gene regulation ͉ mRNA silencing ͉ RyhB ͉ small RNA ͉ Spot42
Aconitase is an iron–sulfur protein and a major enzyme of the TCA cycle that catalyzes the conversion of citrate to isocitrate under iron-rich conditions. In Escherichia coli, aconitase B (AcnB) is a typical moonlighting protein that can switch to its apo form (apo-AcnB) which favors binding its own mRNA 3′UTR and stabilize it when intracellular iron become scarce. The small regulatory RNA (sRNA) RyhB has previously been shown to promote RNase E-dependent degradation of acnB mRNA when it was expressed from an ectopic arabinose-dependent promoter, independently of intracellular iron levels. In marked contrast, we report here that expression of RyhB under low-iron conditions did not result in acnB mRNA degradation even when RyhB was bound to acnB ribosome binding site (RBS). Genetic and biochemical evidence suggested that, under low-iron conditions, apo-AcnB bound to acnB 3′UTR close to a RNase E cleavage site that is essential for RyhB-induced acnB mRNA degradation. Whereas RyhB can block acnB translation initiation, RNase E-dependent degradation of acnB was prevented by apo-AcnB binding close to the cleavage site. This previously uncharacterized regulation suggests an intricate post-transcriptional mechanism that represses protein expression while insuring mRNA stability.
Iron starvation and oxidative stress are 2 hurdles that bacteria must overcome to establish an infection. Pathogenic bacteria have developed many strategies to efficiently infect a broad range of hosts, including humans. The best characterized systems make use of regulatory proteins to sense the environment and adapt accordingly. For example, iron-sulfur clusters are critical for sensing the level and redox state of intracellular iron. The regulatory small RNA (sRNA) RyhB has recently been shown to play a central role in adaptation to iron starvation, while the sRNA OxyS coordinates cellular response to oxidative stress. These regulatory sRNAs are well conserved in many bacteria and have been shown to be essential for establishing a successful infection. An overview of the different strategies used by bacteria to cope with iron starvation and oxidative stress is presented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.