Linking demographic and genetic dispersal measures is of fundamental importance for movement ecology and evolution. However, such integration can be difficult, particularly for highly fecund species that are often the target of management decisions guided by an understanding of population movement. Here, we present an example of how the influence of large population sizes can preclude genetic approaches from assessing demographic population structuring, even at a continental scale. The Australian plague locust, Chortoicetes terminifera, is a significant pest, with populations on the eastern and western sides of Australia having been monitored and managed independently to date. We used microsatellites to assess genetic variation in 12 C. terminifera population samples separated by up to 3000 km. Traditional summary statistics indicated high levels of genetic diversity and a surprising lack of population structure across the entire range. An approximate Bayesian computation treatment indicated that levels of genetic diversity in C. terminifera corresponded to effective population sizes conservatively composed of tens of thousands to several million individuals. We used these estimates and computer simulations to estimate the minimum rate of dispersal, m, that could account for the observed range-wide genetic homogeneity. The rate of dispersal between both sides of the Australian continent could be several orders of magnitude lower than that typically considered as required for the demographic connectivity of populations. (Résumé d'auteur
Few population genetics studies have been carried out on major locust species. In particular, an understanding of the population genetic structure of the Australian plague locust, Chortoicetes terminifera, is lacking. We isolated and characterized eight polymorphic microsatellite loci in C. terminifera, and described experimental conditions for polymerase chain reaction multiplexing and genotyping these loci. The number of alleles per locus ranged from 11 to 29 and the expected heterozygosity ranged from 0.797 to 0.977. One locus was found to be X-linked. Results of cross-taxon amplification tests are reported in four species of the Oedipodinae subfamily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.