Owing to the small quantities of analytes and small volumes involved in single-cell analysis techniques, manipulation strategies must be chosen carefully. The lysis of single cells for downstream chemical analysis in capillaries and lab-on-a-chip devices can be achieved by optical, acoustic, mechanical, electrical or chemical means, each having their respective strengths and weaknesses. Selection of the most appropriate lysis method will depend on the particulars of the downstream cell lysate processing. Ultrafast lysis techniques such as the use of highly focused laser pulses or pulses of high voltage are suitable for applications requiring high temporal resolution. Other factors, such as whether the cells are adherent or in suspension and whether the proteins to be collected are desired to be native or denatured, will determine the suitability of detergent-based lysis methods. Therefore, careful selection of the proper lysis technique is essential for gathering accurate data from single cells.
We introduce an automated digital microfluidic (DMF) platform capable of performing immunoassays from sample to analysis with minimal manual intervention. This platform features (a) a 90 Pogo pin interface for digital microfluidic control, (b) an integrated (and motorized) photomultiplier tube for chemiluminescent detection, and (c) a magnetic lens assembly which focuses magnetic fields into a narrow region on the surface of the DMF device, facilitating up to eight simultaneous digital microfluidic magnetic separations. The new platform was used to implement a three-level full factorial design of experiments (DOE) optimization for thyroid-stimulating hormone immunoassays, varying (1) the analyte concentration, (2) the sample incubation time, and (3) the sample volume, resulting in an optimized protocol that reduced the detection limit and sample incubation time by up to 5-fold and 2-fold, respectively, relative to those from previous work. To our knowledge, this is the first report of a DOE optimization for immunoassays in a microfluidic system of any format. We propose that this new platform paves the way for a benchtop tool that is useful for implementing immunoassays in near-patient settings, including community hospitals, physicians' offices, and small clinical laboratories.
The surface of nanoparticles changes immediately after intravenous injection because blood proteins adsorb on the surface. How this interface changes during circulation and its impact on nanoparticle distribution within the body is not understood. Here, we developed a workflow to show that the evolution of proteins on nanoparticle surfaces predicts the biological fate of nanoparticles in vivo. This workflow involves extracting nanoparticles at multiple time points from circulation, isolating the proteins off the surface and performing proteomic mass spectrometry. The mass spectrometry protein library served as inputs, while blood clearance and organ accumulation were used as outputs to train a supervised deep neural network that predicts nanoparticle biological fate. In a double-blinded study, we tested the network by predicting nanoparticle spleen and liver accumulation with upward of 94% accuracy. Our neural network discovered that the mechanism of liver and spleen uptake is due to patterns of a multitude of nanoparticle surface adsorbed proteins. There are too many combinations to change these proteins manually using chemical or biological inhibitors to alter clearance. Therefore, we developed a technique that uses the host to act as a bioreactor to prepare nanoparticles with predictable clearance patterns that reduce liver and spleen uptake by 50% and 70%, respectively. These techniques provide opportunities to both predict nanoparticle behavior and also to engineer surface chemistries that are specifically designed by the body.
Previous studies have demonstrated hematopoietic stem cell amplification in vitro after the activation of three cell-surface receptors: flt3͞flk2, c-kit, and gp130. We now show flt3-ligand and Steel factor alone will stimulate >85% of c-kit ؉ Sca-1 ؉ lin ؊ adult mouse bone marrow cells to proliferate in single-cell serum-free cultures, but concomitant retention of their stem cell activity requires additional exposure to a ligand that will activate gp130. Moreover, this response is restricted to a narrow range of gp130-activating ligand concentrations, above and below which hematopoietic stem cell activity is lost. These findings indicate a unique contribution of gp130 signaling to the maintenance of hematopoietic stem cell function when these cells are stimulated to divide with additional differential effects dictated by the intensity of gp130 activation.IL-6 ͉ serum-free culture
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.