Given a graph G, its k-coloring graph is the graph whose vertex set is the proper k-colorings of the vertices of G with two k−colorings adjacent if they differ at exactly one vertex. In this paper, we consider the question: Which graphs can be coloring graphs? In other words, given a graph H, do there exist G and k such that H is the k-coloring graph of G? We will answer this question for several classes of graphs and discuss important obstructions to being a coloring graph involving order, girth, and induced subgraphs.
Lie algebras and quantum groups are not usually studied by an undergraduate. However, in the study of these structures, there are interesting questions that are easily accessible to an upper-level undergraduate. Here we look at the expansion of a nested set of brackets that appears in relations presented in a paper of Lum on toroidal algebras. We illuminate certain terms that must be in the expansion, providing a partial answer for the closed form. MSC2010: 17B67.
For a suitable sequence of Weyl group elements {w (l) } l≥0 we give explicit combinatorial descriptions of the crystals B w (l) (kΛ0) for the Demazure modules V w (l) (kΛ0) of the quantum affine Lie algebra Uq( sl(n)) in terms of extended Young diagrams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.