Among the known Toll-like receptors (TLRs), Toll-like receptor 2 (TLR2) is a key sensor for detecting Staphylococcus aureus invasion. But the function of TLR2 during S. aureus infection in different cell populations is unclear. Two different cell subtypes were chosen to study the interaction of S. aureus with TLR2 because macrophages are extremely different from one compartment to another and their capacity to respond to live bacteria or bacterial products differs from one site to another. The contribution of TLR2 to the host innate response against acute live S. aureus infection and heat-killed S. aureus (HKSA) using anti-TLR2 antibody in murine peritoneal macrophages and resident fresh bone marrow cells has been investigated here. TLR2 blocking before infection induces the release of interleukin (IL)-10 by macrophages thereby inhibiting excessive production of oxidants by activating antioxidant enzymes. TLR2-blocked peritoneal macrophages showed impaired release of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and IL-6 in response to both live and heat-killed S. aureus infection except bone marrow cells. TLR2-mediated free radical production and killing of S. aureus were modulated by TLR2 blocking in peritoneal macrophages and resident bone marrow cells. This study supported that S. aureus persists in resident bone marrow cells in a state of quiescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.