The filamentous fungus Aspergillus tubingensis that belongs to the black Aspergillus section has the capacity to produce high-value metabolites, for instance, naphtho-gamma-pyrones (NGPs). For these fungal secondary metabolites, numerous biological properties of industrial interest have been demonstrated, such as antimicrobial, antioxidant and anti-cancer capacities. It has been observed that production of these secondary metabolites is linked with fungal sporulation. The aim of this research was to apply osmotic and oxidative environmental stresses to trigger the production of NGPs in liquid cultures with CYB (Czapek Dox Broth). In addition, numerous parameters were tested during the experiments, such as pH value, incubation time, container geometry, and static and agitation conditions. Results demonstrate that the produced amount of NGPs can be enhanced by decreasing the water activity (a w) or by adding an oxidative stress factor. In conclusion, this study can contribute to our knowledge regarding A. tubingensis to present an effective method to increase NGP production, which may support the development of current industrial processes.
Few studies concerning the nutritional requirements of Deinococcus geothermalis DSM 11300 have been conducted to date. Three defined media compositions have been published for the growth of this strain but they were found to be inadequate to achieve growth without limitation. Furthermore, growth curves, biomass concentration and growth rates were generally not available. Analysis in Principal Components was used in this work to compare and consequently to highlight the main compounds which differ between published chemically defined media. When available, biomass concentration, and/or growth rate were superimposed to the PCA analysis. The formulations of the media were collected from existing literature; media compositions designed for the growth of several strains of Deinococcaceae or Micrococcaceae were included. The results showed that a defined medium adapted from Holland et al. (Appl Microbiol Biotechnol 72:1074-1082, 2006) was the best basal medium and was chosen for further studies. A growth rate of 0.03 h(-1) and a final OD600nm of 0.55 were obtained, but the growth was linear. Then, the effects of several medium components on oxygen uptake and biomass production by Deinococcus geothermalis DSM 11300 were studied using a respirometry-based method, to search for the nutritional limitation. The results revealed that the whole yeast extract in the medium with glucose is necessary to obtain a non-limiting growth of Deinococcus geothermalis DSM 11300 at a maximum growth rate of 0.64 h(-1) at 45 °C.
Deinococcus geothermalis metabolism has been scarcely studied to date, although new developments on its utilization for bioremediation have been carried out. So, large-scale production of this strain and a better understanding of its physiology are required. A fed-batch experiment was conducted to achieve a high cell density non-limiting culture of D. geothermalis DSM 11302. A co-substrate nutritional strategy using glucose and yeast extract was carried out in a 20-L bioreactor in order to maintain a non-limited growth at a maximal growth rate of 1 h(-1) at 45 °C. Substrate supplies were adjusted by monitoring online culture parameters and physiological data (dissolved oxygen, gas analyses, respiratory quotient, biomass concentration). The results showed that yeast extract could serve as both carbon and nitrogen sources, although glucose and ammonia were consumed too. Yeast extract carbon-specific uptake rate reached a value 4.5 times higher than glucose carbon-specific uptake rate. Cell concentration of 9.6 g L(-1) dry cell weight corresponding to 99 g of biomass was obtained using glucose and yeast extract as carbon and nitrogen sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.