Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca 2؉ channel complexes. Ca V ␣2␦1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type Ca V 1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant Ca V ␣2␦1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of Ca V ␣2␦1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the Ca V ␣2␦1-mediated increase in the peak current density and voltage-dependent gating of Ca V 1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored Ca V ␣2␦1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of Ca V ␣2␦1 as well as the Ca V ␣2␦1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of Ca V ␣2␦1, and furthermore that N-glycosylation of Ca V ␣2␦1 is essential to produce functional L-type Ca 2؉ channels.The regulation of Ca 2ϩ influx in cardiac cells is critical to the generation of the force necessary for the myocardium to meet the physiological needs of the body (1). In resting cells, intracellular free ionized Ca 2ϩ is maintained at a low concentration (high nanomolar range) by the concerted action of mechanisms that prevent Ca 2ϩ entry, promote its extrusion (mostly via the Na ϩ /Ca 2ϩ exchanger), and ensure its storage in the sarcoplasmic reticulum (2). Ca 2ϩ entry is mediated mainly by the cardiac L-type Ca 2ϩ channel, which is central to the initiation of excitation-contraction coupling via Ca 2ϩ -induced Ca 2ϩ release from the sarcoplasmic reticulum. Regulation of the L-type Ca 2ϩ current has profound physiological significance. Indeed, alterations in density or the activation/inactivation gating of L-type Ca 2ϩ channels have been implicated in a variety of cardiovascular diseases (3, 4), including cardiac arrhythmias such as atrial fibrillation (5-8), heart failure (9, 10), and ischemic heart disease (10). The molecular mechanisms underlying changes in the activity of the L-type Ca 2ϩ channel remain under study for most pathologies.The L-type Ca V 1.2 channel belongs to the molecular family of high voltage-activated Ca V channels. High voltage-activated Ca V 1.2 channels are hetero-oligo...
Highlights d Cryo-EM analysis of thermostabilized mGlu 5 receptor bound to inhibitors or activators d X-ray structure of trans-Alloswitch-1 bound to thermostable mGlu 5 7TMs d Photopharmacology provides insight into allosteric regulation of mGlu 5 7TMs d Multiple conformations of mGlu 5 receptor activate G protein
Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes. Co-expression of CaVα2δ1 with CaVβ/CaVα1 proteins reconstitutes the functional properties of native L-type currents, but the interacting domains at the CaV1.2/CaVα2δ1 interface are unknown. Here, a homology-based model of CaV1.2 identified protein interfaces between the extracellular domain of CaVα2δ1 and the extracellular loops of the CaVα1 protein in repeats I (IS1S2 and IS5S6), II (IIS5S6), and III (IIIS5S6). Insertion of a 9-residue hemagglutinin epitope in IS1S2, but not in IS5S6 or in IIS5S6, prevented the co-immunoprecipitation of CaV1.2 with CaVα2δ1. IS1S2 contains a cluster of three conserved negatively charged residues Glu-179, Asp-180, and Asp-181 that could contribute to non-bonded interactions with CaVα2δ1. Substitutions of CaV1.2 Asp-181 impaired the co-immunoprecipitation of CaVβ/CaV1.2 with CaVα2δ1 and the CaVα2δ1-dependent shift in voltage-dependent activation gating. In contrast, single substitutions in CaV1.2 in neighboring positions in the same loop (179, 180, and 182–184) did not significantly alter the functional up-regulation of CaV1.2 whole-cell currents. However, a negatively charged residue at position 180 was necessary to convey the CaVα2δ1-mediated shift in the activation gating. We also found a more modest contribution from the positively charged Arg-1119 in the extracellular pore region in repeat III of CaV1.2. We conclude that CaV1.2 Asp-181 anchors the physical interaction that facilitates the CaVα2δ1-mediated functional modulation of CaV1.2 currents. By stabilizing the first extracellular loop of CaV1.2, CaVα2δ1 may up-regulate currents by promoting conformations of the voltage sensor that are associated with the channel's open state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.