Unilamellar vesicles of varying and reasonably uniform size were prepared from 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) by the extrusion procedure and sonication. Quasi-elastic light scattering was used to show that different vesicle preparations had mean (Z-averaged) diameters of 1340, 900, 770, 630, and 358 A (sonicated). Bilayer-phase behavior as detected by differential scanning calorimetry was consistent with the existence of essentially uniform vesicle populations of different sizes. The response of these different vesicles to treatment with poly(ethylene glycol) (PEG) was monitored using fluorescence assays for lipid transfer, contents leakage, and contents mixing, as well as quasi-elastic light scattering. No fusion, as judged by vesicle contents mixing and change in vesicle size, was detected for vesicles of diameter greater than 770 A. The diameters of smaller vesicles increased dramatically when treated with high concentrations of PEG, although mixing of their contents could not be detected both because of their small trapped volumes and because of the extensive leakage induced in small vesicles by high concentrations of PEG. Lipid transfer was detected between vesicles of all sizes. We conclude the high bilayer curvature does encourage fusion of closely juxtaposed membrane bilayers but that highly curved vesicles appear also to rupture and form larger structures when diluted from high PEG concentration, a process that can be confused with fusion. Despite the failure of PEG to induce fusion of large, uncurved vesicles composed of a single phosphatidylcholine, these vesicles can be induced to fuse when they contain small amounts of certain amphiphathic compounds thought to play a role in cellular fusion processes. Thus, vesicles which contained 0.5 mol % L-alpha-lysopalmitoylphosphatidylcholine, 5 mol % platelet activating factor, or 0.5 mol % palmitic acid fused in the presence of 30%, 25%, and 20% (w/w) PEG, respectively. However, vesicles containing 1,2-dipalmitoyl-sn-glycerol, 1,2-dioleoyl-sn-glycerol, 1-oleoyl-2-acetyl-sn-glycerol, or monooleoyl-rac-glycerol at surface concentrations up to 5 mol % did not fuse in the presence or absence of PEG. There was no correlation between the abilities of these amphipaths to induce phase separation or nonlamellar phases and their abilities to support fusion of pure DPPC unilamellar vesicles in the presence of high concentrations of PEG. The results are discussed in terms of the type of disrupted lipid packing that could be expected to favor PEG-mediated fusion.
We have examined the effect of poly(ethylene glycol) (PEG) on stable large unilamellar vesicles formed by a rapid extrusion technique and composed of pure synthetic phosphatidylcholines. The lipid systems studied were the saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the monounsaturated 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC). PEG at all concentrations (3.8-40 wt %) induced lipid mixing between large vesicles composed of these phosphatidylcholines. Extensive leakage of internal contents also occurred at high PEG concentrations. However, in contrast to our previous report [Parente, R. A., & Lentz, B. R. (1986) Biochemistry 25, 6678], we could detect no mixing of internal contents indicative of fusion. This discrepancy is due to environmental factors that affect the behavior of 8-amino-naphthalene-1,3,6-trisulfonic acid (ANTS), the fluorophore used in the assay for contents mixing and leakage [McIntyre, Parks, Massenburg, & Lentz (1991) (submitted)]. In agreement with the results of the fusion assay, quasielastic light-scattering measurements revealed no increase in vesicle size following treatment with PEG. These results emphasize the importance of using assays for both membrane mixing and contents mixing to demonstrate fusion, since significant lipid mixing occurred in the absence of fusion. We conclude that large vesicles composed of pure phosphatidylcholine do not fuse in the presence of even high concentrations of PEG. However, DOPC vesicles containing a small amount of an amphipathic "impurity" have been shown to fuse in the presence of PEG at 23 degrees C. These results are discussed in terms of their implications for the mechanism of PEG-induced membrane fusion.
We have investigated variations in the rate of Mn2+-catalyzed phosphatidylglycerol transbilayer migration [Lentz, Madden, & Alford (1982) Biochemistry 21, 6799] with changes in phospholipid and cation concentration over more than a 100-fold range of both parameters. The slope of a double logarithmic plot of the rate of transbilayer lipid migration versus lipid concentration was 1.7, suggesting that lipid redistribution was dependent on vesicle aggregation or collision. A model involving transitory dimerization of vesicles was able to account for the concentration dependence of the transbilayer redistribution rate. The observed variation in rate with the logarithm of Mn2+ concentration was complex: linear above 0.4 microM (corresponding to roughly 2.5 Mn2+ per vesicle) but involving a steeper dependence on Mn2+ below 0.04 microM (roughly four vesicles per Mn2+). The rate of transbilayer redistribution increased substantially between 37 and 56 degrees C, yielding a nonlinear Arrhenius plot. There was no evidence of either fusion or lipid exchange between vesicles at the low concentrations of Mn2+ needed for transbilayer redistribution. The data are consistent with a model suggesting transitory "micro-domains" of a dehydrated, interbilayer complex as involved in the transition state and are inconsistent with a model involving an inverted micelle-type structure for the transition state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.