Prion diseases are neurodegenerative pathologies characterized by apoptotic neuronal death. Although the late execution phase of neuronal apoptosis is beginning to be characterized, the sequence of events occurring during the early decision phase is not yet well known. In murine cortical neurons in primary culture, apoptosis was first induced by exposure to a synthetic peptide homologous to residues 106-126 of the human prion protein (PrP), PrP106-126. Exposure to its aggregated form induced a massive neuronal death within 24 h. Apoptosis was characterized by nuclear fragmentation, neuritic retraction and fragmentation and activation of caspase-3. During the early decision phase, reactive oxygen species were detected after 3 h. Using immunocytochemistry, we showed a peak of phosphorylated c-Jun-N-terminal kinase (JNK) translocation into the nucleus after 8 h, along with the activation of the nuclear c-Jun transcription factor. Both pharmacological inhibition of JNK by SP600125 and overexpression of a dominant negative form of c-Jun significantly reduced neuronal death, while the MAPK p38 inhibitor SB203580 had no effect. Apoptosis was also studied after exposure of tg338 cortical neurons in primary culture to sheep scrapie agent. In this model, prion-induced neuronal apoptosis gradually increased with time and induced a 40% cell death after 2 weeks exposure. Immunocytochemical analysis showed early c-Jun activation after 7 days. In summary, the JNK-c-Jun pathway plays an important role in neuronal apoptosis induced by PrP106-126. This pathway is also activated during scrapie infection and may be involved in prion-induced neuronal death. Pharmacological blockade of early pathways opens new therapeutic prospects for scrapie PrP-based pathologies.
Cerebrospinal fluid (CSF) contains a dynamic and complex mixture of proteins, which can reflect a physiological and pathological state of the central nervous system. In our present study, we show CSF protein patterns from patients with the two most frequent subtypes of sporadic Creutzfeldt-Jakob disease (sCJD) defined by the codon 129 genotype (MM, MV, and VV) and the protease-resistant form of prion protein (type 1 and type 2). The densitometric analysis of 2D gels showed up-regulation of 27 and down-regulation of 3 proteins in the MM-sCJD as well as the up-regulation of 24 proteins in the VV-sCJD as compared to nondemented control. Almost 40% of sCJD specific regulated proteins in CSF are involved in glucose metabolism, regardless of the codon 129 polymorphism. The increase in CSF levels of lactate dehydrogenase (LDH), glucose-6-phosphate isomerase (G6PI), and fructose-bisphosphate aldolase A (ALDOA) were validated on a larger group of sCJD patients including three possible codon 129 polymorphism carriers and three control groups consisting of nondemented, neurological cases as well as patients suffering from Alzheimer's disease or vascular dementia. Subsequently, the abundance of these glycolytic enzymes in the brain as well as their cellular localization were determined. This study demonstrates for the first time the implication of G6PI in prion-induced pathology as well as its cellular translocalization in sCJD. The identification of sCJD-regulated proteins in CSF of living symptomatic patients in our study can broaden our knowledge about pathological processes occurring in sCJD, as they are still not fully understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.