Two behavioral phenomena characterize human motor memory consolidation: diminishing susceptibility to interference by a subsequent experience and the emergence of delayed, offline gains in performance. A recent model proposes that the sleep-independent reduction in interference is followed by the sleep-dependent expression of offline gains. Here, using the finger-opposition sequence-learning task, we show that an interference experienced at 2 h, but not 8 h, following the initial training prevented the expression of delayed gains at 24 h post-training. However, a 90-min nap, immediately post-training, markedly reduced the susceptibility to interference, with robust delayed gains expressed overnight, despite interference at 2 h post-training. With no interference, a nap resulted in much earlier expression of delayed gains, within 8 h post-training. These results suggest that the evolution of robustness to interference and the evolution of delayed gains can coincide immediately post-training and that both effects reflect sleep-sensitive processes.
In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the existence of two different spindle types, we characterized the activity associated with slow (11-13 Hz) and fast (13-15 Hz) spindles, identified as discrete events during non-rapid eye movement sleep, in non-sleepdeprived human volunteers, using simultaneous electroencephalography and functional MRI. An activation pattern common to both spindle types involved the thalami, paralimbic areas (anterior cingulate and insular cortices), and superior temporal gyri. No thalamic difference was detected in the direct comparison between slow and fast spindles although some thalamic areas were preferentially activated in relation to either spindle type. Beyond the common activation pattern, the increases in cortical activity differed significantly between the two spindle types. Slow spindles were associated with increased activity in the superior frontal gyrus. In contrast, fast spindles recruited a set of cortical regions involved in sensorimotor processing, as well as the mesial frontal cortex and hippocampus. The recruitment of partially segregated cortical networks for slow and fast spindles further supports the existence of two spindle types during human non-rapid eye movement sleep, with potentially different functional significance.H uman sleep is associated with a profound modification of consciousness and the emergence of distinct sleep oscillations. In the early stages of non-rapid eye movement (NREM) sleep, electroencephalographic recordings show characteristic spindle oscillations. In humans, spindles consist of waxing-and-waning 11-to 15-Hz oscillations, lasting 0.5-3 sec. At the cellular level, spindles are associated with substantial neuronal activity. Spindles arise from cyclic inhibition of thalamo-cortical (TC) neurons by reticular thalamic neurons. Postinihibitory rebound spike bursts in TC cells entrain cortical populations in spindle oscillations (1). These neuronal mechanisms, which involve large TC populations, are thought to shape the processing of information during light NREM sleep and participate in the alteration of consciousness that characterizes this stage of sleep.Little is known on the cerebral correlates of human spindles. Early positron emission tomography studies reported a negative relationship between thalamic cerebral blood flow and the power spectrum in the spindle frequency band (2). However, the low temporal resolution of positron emission tomography did not allow for a fine-grained characterization of the cerebral correlates of human spindles. In addition, two kinds of spindles are described in humans. Slow spindles (Ͻ13 Hz) predominate over frontal, whereas fast spindles (Ͼ13 Hz) prevail over centro-parietal areas. The difference in spindle scalp topography is also reflected by profound functional differences. These two spindling activities differ by their circadian and homeostatic regul...
The Canadian Society for Exercise Physiology assembled a Consensus Panel representing national organizations, content experts, methodologists, stakeholders, and end-users and followed an established guideline development procedure to create the Canadian 24-Hour Movement Guidelines for Adults aged 18–64 years and Adults aged 65 years or older: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. These guidelines underscore the importance of movement behaviours across the whole 24-h day. The development process followed the strategy outlined in the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument. A large body of evidence was used to inform the guidelines including 2 de novo systematic reviews and 4 overviews of reviews examining the relationships among movement behaviours (physical activity, sedentary behaviour, sleep, and all behaviours together) and several health outcomes. Draft guideline recommendations were discussed at a 4-day in-person Consensus Panel meeting. Feedback from stakeholders was obtained by survey (n = 877) and the draft guidelines were revised accordingly. The final guidelines provide evidence-based recommendations for a healthy day (24-h), comprising a combination of sleep, sedentary behaviours, and light-intensity and moderate-to-vigorous-intensity physical activity. Dissemination and implementation efforts with corresponding evaluation plans are in place to help ensure that guideline awareness and use are optimized. Novelty First ever 24-Hour Movement Guidelines for Adults aged 18–64 years and Adults aged 65 years or older with consideration of a balanced approach to physical activity, sedentary behaviour, and sleep Finalizes the suite of 24-Hour Movement Guidelines for Canadians across the lifespan
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.