Event-related potentials and ongoing oscillatory electroencephalogram (EEG) activity were measured while subjects performed a cued visual spatial attention task. They were instructed to shift their attention to either the left or right visual hemifield according to a cue, which could be valid or invalid. Thereafter, a peripheral target had to be evaluated. At posterior parietal brain areas early components of the event-related potential (P1 and N1) were higher when the cue had been valid compared with invalid. An anticipatory attention effect was found in EEG alpha magnitude at parieto-occipital electrode sites. Starting 200 ms before target onset alpha amplitudes were significantly stronger suppressed at sites contralateral to the attended visual hemifield than ipsilateral to it. In addition, phase coupling between prefrontal and posterior parietal electrode sites was calculated. It was found that prefrontal cortex shows stronger phase coupling with posterior sites that are contralateral to the attended hemifield than ipsilateral sites. The results suggest that a shift of attention selectively modulates excitability of the contralateral posterior parietal cortex and that this posterior modulation of alpha activity is controlled by prefrontal regions.
In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the existence of two different spindle types, we characterized the activity associated with slow (11-13 Hz) and fast (13-15 Hz) spindles, identified as discrete events during non-rapid eye movement sleep, in non-sleepdeprived human volunteers, using simultaneous electroencephalography and functional MRI. An activation pattern common to both spindle types involved the thalami, paralimbic areas (anterior cingulate and insular cortices), and superior temporal gyri. No thalamic difference was detected in the direct comparison between slow and fast spindles although some thalamic areas were preferentially activated in relation to either spindle type. Beyond the common activation pattern, the increases in cortical activity differed significantly between the two spindle types. Slow spindles were associated with increased activity in the superior frontal gyrus. In contrast, fast spindles recruited a set of cortical regions involved in sensorimotor processing, as well as the mesial frontal cortex and hippocampus. The recruitment of partially segregated cortical networks for slow and fast spindles further supports the existence of two spindle types during human non-rapid eye movement sleep, with potentially different functional significance.H uman sleep is associated with a profound modification of consciousness and the emergence of distinct sleep oscillations. In the early stages of non-rapid eye movement (NREM) sleep, electroencephalographic recordings show characteristic spindle oscillations. In humans, spindles consist of waxing-and-waning 11-to 15-Hz oscillations, lasting 0.5-3 sec. At the cellular level, spindles are associated with substantial neuronal activity. Spindles arise from cyclic inhibition of thalamo-cortical (TC) neurons by reticular thalamic neurons. Postinihibitory rebound spike bursts in TC cells entrain cortical populations in spindle oscillations (1). These neuronal mechanisms, which involve large TC populations, are thought to shape the processing of information during light NREM sleep and participate in the alteration of consciousness that characterizes this stage of sleep.Little is known on the cerebral correlates of human spindles. Early positron emission tomography studies reported a negative relationship between thalamic cerebral blood flow and the power spectrum in the spindle frequency band (2). However, the low temporal resolution of positron emission tomography did not allow for a fine-grained characterization of the cerebral correlates of human spindles. In addition, two kinds of spindles are described in humans. Slow spindles (Ͻ13 Hz) predominate over frontal, whereas fast spindles (Ͼ13 Hz) prevail over centro-parietal areas. The difference in spindle scalp topography is also reflected by profound functional differences. These two spindling activities differ by their circadian and homeostatic regul...
A growing body of evidence supports the active role of sleep for information reprocessing. Whereas past research focused mainly on the distinct rapid eye movement and slow-wave sleep, these results indicate that increased sleep stage 2 spindle activity is related to an increase in recall performance and, thus, may reflect memory consolidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.