Abstract-As advances in technology mature, the need is evident for a coherent simulation of the total electric-drive ship to model the effect of new systems on the overall performance of the vessel. Our laboratory has been developing an integrated architectural model in a physics-based environment which analyzes ship variants using a standard set of metrics, including weight, volume, fuel usage and survivability. This paper discusses advances in the model including the use of operational scenarios, incorporation of a survivability metric, and streamlining the performance of model. The model is employed herein to compare two possible distribution system topologies: a ring bus and a breaker-and-a-half. The ring bus is heavier and larger but more survivable. Fuel usage is equivalent in the two variants.
Developable surfaces are widely used in various engineering applications. However, little attention has been paid to implementing developable surfaces from the onset of a design. The first half of the paper describes a user friendly method of designing developable surfaces in terms of a B-Spline representation whose two directrices lie on parallel planes. The second half of the paper investigates a new method for development and tessellation of such B-Spline developable surfaces, which is necessary for plate cutting and finite element analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.