Estimates of forest net primary production (NPP) demand accurate estimates of root production and turnover. We assessed root turnover with the use of an isotope tracer in two forest free-air carbon dioxide enrichment experiments. Growth at elevated carbon dioxide did not accelerate root turnover in either the pine or the hardwood forest. Turnover of fine root carbon varied from 1.2 to 9 years, depending on root diameter and dominant tree species. These long turnover times suggest that root production and turnover in forests have been overestimated and that sequestration of anthropogenic atmospheric carbon in forest soils may be lower than currently estimated.
31I.31II.32III.34IV.35V.37VI.38VII.3941References41
Summary
The rhizosphere priming effect (RPE) is a mechanism by which plants interact with soil functions. The large impact of the RPE on soil organic matter decomposition rates (from 50% reduction to 380% increase) warrants similar attention to that being paid to climatic controls on ecosystem functions. Furthermore, global increases in atmospheric CO2 concentration and surface temperature can significantly alter the RPE. Our analysis using a game theoretic model suggests that the RPE may have resulted from an evolutionarily stable mutualistic association between plants and rhizosphere microbes. Through model simulations based on microbial physiology, we demonstrate that a shift in microbial metabolic response to different substrate inputs from plants is a plausible mechanism leading to positive or negative RPEs. In a case study of the Duke Free‐Air CO2 Enrichment experiment, performance of the PhotoCent model was significantly improved by including an RPE‐induced 40% increase in soil organic matter decomposition rate for the elevated CO2 treatment – demonstrating the value of incorporating the RPE into future ecosystem models. Overall, the RPE is emerging as a crucial mechanism in terrestrial ecosystems, which awaits substantial research and model development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.