Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death worldwide. PDAC is an aggressive disease with an 11-month median overall survival and a five-year survival of less than 5%. Incidence of PDAC is constantly increasing and is predicted to become the second leading cause of cancer in Western countries within a decade. Despite research and therapeutic development, current knowledge about PDAC molecular mechanisms still needs improvements and it seems crucial to identify novel therapeutic targets. Genomic analyses of PDAC revealed that transforming growth factor β (TGFβ) signaling pathways are modified and the SMAD4 gene is altered in 47% and 60% of cases, respectively, highlighting their major roles in PDAC development. TGFβ can play a dual role in malignancy depending on the context, sometimes as an inhibitor and sometimes as an inducer of tumor progression. TGFβ signaling was identified as a potent inducer of epithelial-to-mesenchymal transition (EMT), a process that confers migratory and invasive properties to epithelial cells during cancer. Therefore, aberrant TGFβ signaling and EMT are linked to promoting PDAC aggressiveness. TGFβ and SMAD pathways were extensively studied but the mechanisms leading to cancer promotion and development still remain unclear. This review aims to describe the complex role of SMAD4 in the TGFβ pathway in patients with PDAC.
Pancreatic ductal adenocarcinoma (PDAC) is one of the malignancies with the worst prognosis despite a decade of efforts. Up to eighty percent of patients are managed at late stages with metastatic disease, in part due to a lack of diagnosis. The effectiveness of PDAC therapies is challenged by the early and widespread metastasis. Epithelial to mesenchymal transition (EMT) is a major driver of cancer progression and metastasis. This process allows cancer cells to gain invasive properties by switching their phenotype from epithelial to mesenchymal. The importance of EMT has been largely described in PDAC, and its importance is notably highlighted by the two major subtypes found in PDAC: the classical epithelial and the quasi-mesenchymal subtypes. Quasi-mesenchymal subtypes have been associated with a poorer prognosis. EMT has also been associated with resistance to treatments such as chemotherapy and immunotherapy. EMT is associated with several key molecular markers both epithelial and mesenchymal. Those markers might be helpful as a biomarker in PDAC diagnosis. EMT might becoming a key new target of interest for the treatment PDAC. In this review, we describe the role of EMT in PDAC, its contribution in diagnosis, in the orientation and treatment follow-up. We also discuss the putative role of EMT as a new therapeutic target in the management of PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.