The double Holliday junction (dHJ) is generally regarded to be a key intermediate of meiotic recombination, whose resolution is critical for the formation of crossover recombinants. In fission yeast, the Mus81-Eme1 endonuclease has been implicated in resolving dHJs. Consistent with this role, we show that Mus81-Eme1 is required for generating meiotic crossovers. However, purified Mus81-Eme1 prefers to cleave junctions that mimic those formed during the transition from double-strand break to dHJ. Crucially, these junctions are cleaved by Mus81-Eme1 in precisely the right orientation to guarantee the formation of a crossover every time. These data demonstrate how crossovers could arise without forming or resolving dHJs using an enzyme that is widely conserved amongst eukaryotes.
The processing of stalled replication forks and the repair of collapsed replication forks are essential functions in all organisms. In fission yeast DNA junctions at stalled replication forks appear to be processed by either the Rqh1 DNA helicase or Mus81-Eme1 endonuclease. Accordingly, we show that the hypersensitivity to agents that cause replication fork stalling of mus81, eme1, and rqh1 mutants is suppressed by a Holliday junction resolvase (RusA), as is the synthetic lethality of a mus81 ؊ rqh1 ؊ double mutant. Recombinant Mus81-Eme1, purified from Escherichia coli, readily cleaves replication fork structures but cleaves synthetic Holliday junctions relatively poorly in vitro. From these data we propose that Mus81-Eme1 can process stalled replication forks before they have regressed to form a Holliday junction. We also implicate Mus81-Eme1 and Rqh1 in the repair of collapsed replication forks. Here Mus81-Eme1 and Rqh1 seem to function on different substrates because RusA can substitute for Mus81-Eme1 but not Rqh1.
A key step in homologous recombination is the loading of Rad51 onto single-stranded DNA to form a nucleoprotein filament that promotes homologous DNA pairing and strand exchange. Mediator proteins, such as Rad52 and Rad55-Rad57, are thought to aid filament assembly by overcoming an inhibitory effect of the single-stranded-DNA-binding protein replication protein A. Here we show that mediator proteins are also required to enable fission yeast Rad51 (called Rhp51) to function in the presence of the F-box DNA helicase Fbh1. In particular, we show that the critical function of Rad22 (an orthologue of Rad52) in promoting Rhp51-dependent recombination and DNA repair can be mostly circumvented by deleting fbh1. Similarly, the reduced growth/viability and DNA damage sensitivity of an fbh1 ؊ mutant are variously suppressed by deletion of any one of the mediators Rad22, Rhp55, and Swi5. From these data we propose that Rhp51 action is controlled through an interplay between Fbh1 and the mediator proteins. Colocalization of Fbh1 with Rhp51 damage-induced foci suggests that this interplay occurs at the sites of nucleoprotein filament assembly. Furthermore, analysis of different fbh1 mutant alleles suggests that both the F-box and helicase activities of Fbh1 contribute to controlling Rhp51.
A key stage during homologous recombination is the processing of the Holliday junction, which determines the outcome of the recombination reaction. To dissect the pathways of Holliday junction processing in a eukaryote, we have targeted an Escherichia coli Holliday junction resolvase to the nuclei of ®ssion yeast recombination-de®cient mutants and analysed their phenotypes. The resolvase partially complements the UV and hydroxyurea hypersensitivity and associated aberrant mitoses of an rqh1 ± mutant. Rqh1 is a member of the RecQ subfamily of DNA helicases that control recombination particularly during S-phase. Signi®cantly, overexpression of the resolvase in wildtype cells partly mimics the loss of viability, hyperrecombination and`cut' phenotype of an rqh1 ± mutant. These results indicate that Holliday junctions form in wild-type cells that are normally removed in a non-recombinogenic way, possibly by Rqh1 catalysing their reverse branch migration. We propose that in the absence of Rqh1, replication fork arrest results in the accumulation of Holliday junctions, which can either impede sister chromatid segregation or lead to the formation of recombinants through Holliday junction resolution.
The blockage of replication forks can result in the disassembly of the replicative apparatus and reversal of the fork to form a DNA junction that must be processed in order for replication to restart and sister chromatids to segregate at mitosis. Fission yeast Mus81-Eme1 and budding yeast Mus81-Mms4 are endonucleases that have been implicated in the processing of aberrant DNA junctions formed at stalled replication forks. Here we have investigated the activity of purified Mus81-Eme1 and Mus81-Mms4 on substrates that resemble DNA junctions that are expected to form when a replication fork reverses. Both enzymes cleave Holliday junctions and substrates that resemble normal replication forks poorly or not at all. However, forks where the equivalents of either both the leading and lagging strands or just the lagging strand are juxtaposed at the junction point, or where either the leading or lagging strand has been unwound to produce a fork with a single-stranded tail, are cleaved well. Cleavage sites map predominantly between 3 and 6 bp 5 of the junction point. For most substrates the leading strand template is cleaved. The sole exception is a fork with a 5 single-stranded tail, which is cleaved in the lagging strand template.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.