Endocytic recycling is coordinated with endocytic uptake to control the composition of the plasma membrane. Although much of our understanding of endocytic recycling has come from studies on the transferrin receptor, a protein internalized through clathrin-dependent endocytosis, increased interest in clathrin-independent endocytosis has led to the discovery of new endocytic recycling systems. Recent insights into the regulatory mechanisms that control endocytic recycling have focused on recycling through tubular carriers and the return to the cell surface of cargo that enters cells through clathrin-independent mechanisms. Recent work emphasizes the importance of regulated recycling in such diverse processes as cytokinesis, cell adhesion and morphogenesis, cell fusion, and learning and memory.
Key Points
The ADP-ribosylation factor (ARF) family of guanine-nucleotide-binding (G) proteins, including the ARF proteins, ARF-like (ARL) proteins and SAR1, regulates membrane traffic and organelle structure, and each family member is regulated through a cycle of GTP binding and GTP hydrolysis, which activate and inactivate, respectively, the G protein.
Traditionally, ARFs have been characterized for their immediate effects in the recruitment of coat proteins to drive cargo sorting, the recruitment of enzymes that can alter membrane lipid composition and the regulation of cytoskeletal factors. Now, new roles for ARFs have been discovered at the Golgi complex, for example in driving lipid transport. ARL proteins are also being increasingly linked to coordination of trafficking with cytoskeletal processes, for example during ciliogenesis.
There is particular interest in the mechanisms that control recruitment of the ARF guanine nucleotide exchange factors (GEFs) that mediate GTP binding to ARFs and, in the case of the cytohesin (also known as ARNO) GEF, membrane recruitment is coupled to relief of autoinhibition. GEFs such as cytohesin may also participate in a cascade of activation between particular pairs of ARFs.
Traditionally, G protein signalling has been viewed as a linear pathway, with the GDP-bound form of an ARF protein being inactive; however, more recent studies have highlighted novel roles for these GDP-bound forms and have also shown that GEFs and GTPase-activating proteins (GAPs) themselves can engage in distinct signalling responses through scaffolding functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.