SUCNR1 (or GPR91) belongs to the family of G protein-coupled receptors (GPCR), which represents the largest group of membrane proteins in human genome. The majority of marketed drugs targets GPCRs, directly or indirectly. SUCNR1 has been classified as an orphan receptor until a landmark study paired it with succinate, a citric acid cycle intermediate.According to the current paradigm, succinate triggers SUCNR1 signaling pathways to indicate local stress that may affect cellular metabolism. SUCNR1 implication has been well documented in renin-induced hypertension, ischemia/reperfusion injury, inflammation and immune response, platelet aggregation and retinal angiogenesis. In addition, the SUCNR1-induced increase of blood pressure may contribute to diabetic nephropathy or cardiac hypertrophy.The understanding of SUCNR1 activation, signaling pathways and functions remains largely elusive, which calls for deeper investigations. SUCNR1 shows a high potential as an innovative drug target and is probably an important regulator of basic physiology. In order to achieve the full characterization of this receptor, more specific pharmacological tools such as small-molecules modulators will represent an important asset. In this review, we describe the structural features of SUCNR1, its current ligands and putative binding pocket. We give an exhaustive overview of the known and hypothetical signaling partners of the receptor in different in vitro and in vivo systems. The link between SUCNR1 intracellular pathways and its pathophysiological roles are also extensively discussed.
We report here the synthesis of 7-phenoxy-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides and their evaluation as AMPA receptor positive allosteric modulators (AMPApams). The impact of substitution on the phenoxy ring and on the nitrogen atom at the 4-position was examined. At GluA2(Q) expressed in HEK293 cells (calcium flux experiment), the most potent compound was 11m (4-cyclopropyl-7-(3-methoxyphenoxy)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide, EC50=2.0 nM). The Hill coefficient in the screening and the shape of the dimerization curve in small angle X-ray scattering (SAXS) experiments using isolated GluA2 ligand-binding domain (GluA2-LBD) is consistent with binding of one molecule of 11m per dimer interface, contrary to most benzothiadiazine dioxides developed to date. This observation was confirmed by the X-ray structure of 11m bound to GluA2-LBD and by NMR. This is the first benzothiadiazine dioxide AMPApam to reach the nanomolar range.
G protein-coupled receptors are the most important drug targets for human diseases. An important number of them remain devoid of confirmed ligands. GPR27 is one of these orphan receptors, characterized by a high level of conservation among vertebrates and a predominant expression in the central nervous system. In addition, it has recently been linked to insulin secretion. However, the absence of endogenous or surrogate ligands for GPR27 complicates the examination of its biologic function. Our aim was to validate GPR27 signaling pathways, and therefore we sought to screen a diversity-oriented synthesis library to identify GPR27-specific surrogate agonists. To select an optimal screening assay, we investigated GPR27 ligand-independent activity. Both in G protein-mediated pathways and in -arrestin 2 recruitment, no ligand-independent activity could be measured. However, we observed a recruitment of-arrestin 2 to a GPR27V chimera in the presence of membrane-anchored G protein-coupled receptor kinase-2. Therefore, we optimized a firefly luciferase complementation assay to screen against this chimeric receptor. We identified two compounds [-[4-(anilinocarbonyl)phenyl]-2,4-dichlorobenzamide (ChemBridge, San Diego, CA; ID5128535) and 2,4-dichloro--{4-[(1,3-thiazol-2-ylamino)sulfonyl]phenyl}benzamide (ChemBridge ID5217941)] sharing a -phenyl-2,4-dichlorobenzamide scaffold, which were selective for GPR27 over its closely related family members GPR85 and GPR173. The specificity of the activity was confirmed with a NanoLuc Binary Technology-arrestin 2 assay, imaging of green fluorescent protein-tagged -arrestin 2, and PathHunter-arrestin 2 assay. Interestingly, no G protein activation was detected upon activation of GPR27 by these compounds. Our study provides the first selective surrogate agonists for the orphan GPR27.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.