ObjectiveWe investigated the levels and antimicrobial activity of antimicrobial proteins and peptides (AMPs) in breast milk consumed by preterm infants, and whether deficiencies of these factors were associated with late-onset neonatal sepsis (LOS), a bacterial infection that frequently occurs in preterm infants in the neonatal period.Study designBreast milk from mothers of preterm infants (≤32 weeks gestation) was collected on days 7 (n = 88) and 21 (n = 77) postpartum. Concentrations of lactoferrin, LL-37, beta-defensins 1 and 2, and alpha-defensin 5 were measured by enzyme-linked immunosorbent assay. The antimicrobial activity of breast milk samples against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, and Streptococcus agalactiae was compared to the activity of infant formula, alone or supplemented with physiological levels of AMPs. Samples of breast milk fed to infants with and without subsequent LOS were compared for levels of AMPs and inhibition of bacterial growth.ResultsLevels of most AMPs and antibacterial activity in preterm breast milk were higher at day 7 than at day 21. Lactoferrin was the only AMP that limited pathogen growth >50% when added to formula at a concentration equivalent to that present in breast milk. Levels of AMPs were similar in the breast milk fed to infants with and without LOS, however, infants who developed LOS consumed significantly less breast milk and lower doses of milk AMPs than those who were free from LOS.ConclusionsThe concentrations of lactoferrin and defensins in preterm breast milk have antimicrobial activity against common neonatal pathogens.
While effect sizes were small compared with major effects of the surgery itself, an evidence-informed clinical pathway can improve health related quality of life (HRQoL) of hip and knee arthroplasty patients with degenerative joint disorder in routine clinical practice for up to 12 months post-operatively. CLINICALTRIALS.GOV IDENTIFIER: NCT00277186.
Neonates, especially those born preterm, are at increased risk of sepsis and adverse long-term effects associated with infection-related inflammation. Distinct neonatal immune responses and dysregulated inflammation are central to this unique susceptibility. The traditional separation of sepsis into an initial hyper-inflammatory response followed by hypo-inflammation is continually under review with new developments in this area of research. There is evidence to support the association of mortality in the early acute phase of sepsis with an overwhelming hyper-inflammatory immune response. Emerging evidence from adults suggests that hypo- and hyper-inflammation can occur during any phase of sepsis and that sepsis-immunosuppression is associated with increased mortality, morbidity, and risk to subsequent infection. In adults, sepsis-induced immunosuppression (SII) is characterised by alterations of innate and adaptive immune responses, including, but not limited to, a prominent bias toward anti-inflammatory cytokine secretion, diminished antigen presentation to T cells, and reduced activation and proliferation of T cells. It is unclear if sepsis-immunosuppression also plays a role in the adverse outcomes associated with neonatal sepsis. This review will focus on exploring if key characteristics associated with SII in adults are observed in neonates with sepsis.
Complexes of specific presynaptic proteins have been hypothesized to drive or catalyze the membrane fusion steps of exocytosis. Here we use a stage-specific preparation to test the roles of SNAREs, synaptotagmin, and SNARE-binding proteins in the mechanism of Ca 2؉ -triggered membrane fusion. Excess exogenous proteins, sufficient to block SNARE interactions, did not inhibit either the Ca 2؉ sensitivity, extent, or kinetics of fusion. In contrast, despite a limited effect on SNARE and synaptotagmin densities, treatments with high doses of chymotrypsin markedly inhibited fusion. Conversely, low doses of chymotrypsin had no effect on the Ca 2؉ sensitivity or extent of fusion but did alter the kinetic profile, indicating a more direct involvement of other proteins in the triggered fusion pathway. SNAREs, synaptotagmin, and their immediate binding partners are critical to exocytosis at a stage other than membrane fusion, although they may still influence the triggered steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.