ObjectivesTo evaluate sources of error in the Magnetic Resonance Imaging (MRI) measurement of percent fibroglandular tissue (%FGT) using two-point Dixon sequences for fat-water separation.MethodsTen female volunteers (median age: 31 yrs, range: 23–50 yrs) gave informed consent following Research Ethics Committee approval. Each volunteer was scanned twice following repositioning to enable an estimation of measurement repeatability from high-resolution gradient-echo (GRE) proton-density (PD)-weighted Dixon sequences. Differences in measures of %FGT attributable to resolution, T1 weighting and sequence type were assessed by comparison of this Dixon sequence with low-resolution GRE PD-weighted Dixon data, and against gradient-echo (GRE) or spin-echo (SE) based T1-weighted Dixon datasets, respectively.Results%FGT measurement from high-resolution PD-weighted Dixon sequences had a coefficient of repeatability of ±4.3%. There was no significant difference in %FGT between high-resolution and low-resolution PD-weighted data. Values of %FGT from GRE and SE T1-weighted data were strongly correlated with that derived from PD-weighted data (r = 0.995 and 0.96, respectively). However, both sequences exhibited higher mean %FGT by 2.9% (p < 0.0001) and 12.6% (p < 0.0001), respectively, in comparison with PD-weighted data; the increase in %FGT from the SE T1-weighted sequence was significantly larger at lower breast densities.ConclusionAlthough measurement of %FGT at low resolution is feasible, T1 weighting and sequence type impact on the accuracy of Dixon-based %FGT measurements; Dixon MRI protocols for %FGT measurement should be carefully considered, particularly for longitudinal or multi-centre studies.
ObjectivesThe aim of this study was to propose a magnetic resonance imaging acquisition and analysis protocol that uses image segmentation to measure and depict fluid, fat, and muscle volumes in breast cancer–related lymphoedema (BCRL). This study also aims to compare affected and control (unaffected) arms of patients with diagnosed BCRL, providing an analysis of both the volume and the distribution of the different tissue components.Materials and MethodsThe entire arm was imaged with a fluid-sensitive STIR and a 2-point 3-dimensional T1W gradient-echo–based Dixon sequences, acquired in sagittal orientation and covering the same imaging volume. An automated image postprocessing procedure was developed to simultaneously (1) contour the external volume of the arm and the muscle fascia, allowing separation of the epifacial and subfascial volumes; and to (2) separate the voxels belonging to the muscle, fat, and fluid components. The total, subfascial, epifascial, muscle (subfascial), fluid (epifascial), and fat (epifascial) volumes were measured in 13 patients with unilateral BCRL. Affected versus unaffected volumes were compared using a 2-tailed paired t test; a value of P < 0.05 was considered to be significant. Pearson correlation was used to investigate the linear relationship between fat and fluid excess volumes. The distribution of fluid, fat, and epifascial excess volumes (affected minus unaffected) along the arm was also evaluated using dedicated tissue composition maps.ResultsTotal arm, epifascial, epifascial fluid, and epifascial fat volumes were significantly different (P < 0.0005), with greater volume in the affected arms. The increase in epifascial volume (globally, 94% of the excess volume) constituted the bulk of the lymphoedematous swelling, with fat comprising the main component. The total fat excess volume summed over all patients was 2.1 times that of fluid. Furthermore, fat and fluid excess volumes were linearly correlated (Pearson r = 0.75), with the fat excess volume being greater than the fluid in 11 subjects. Differences in muscle compartment volume between affected and unaffected arms were not statistically significant, and contributed only 6% to the total excess volume. Considering the distribution of the different tissue excess volumes, fluid accumulated prevalently around the elbow, with substantial involvement of the upper arm in only 3 cases. Fat excess volume was generally greater in the upper arm; however, the relative increase in epifascial volume, which considers the total swelling relative to the original size of the arm, was in 9 cases maximal within the forearm.ConclusionsOur measurements indicate that excess of fat within the epifascial layer was the main contributor to the swelling, even when a substantial accumulation of fluid was present. The proposed approach could be used to monitor how the internal components of BCRL evolve after presentation, to stratify patients for treatment, and to objectively assess treatment response. This methodology provides quantitative metrics not...
Background: Contrast-Enhanced Magnetic Resonance Lymphangiography (CE-MRL) presents some limitations: (i) it does not quantify lymphatic functionality; and (ii) enhancement of vascular structures may confound image interpretation. Furthermore, although CE-MRL is well described in the published literature for the lower limbs, there is a paucity of data with regards to its use in the upper limbs. In this proof-of-principle study, we propose a new protocol to perform CE-MRL in the upper limbs of patients with breast cancer-related lymphedema (BCRL) which addresses these limitations.Methods and Results: CE-MRL was performed using a previously published (morphological) protocol and the proposed protocol (quantitative) on both the ipsilateral (abnormal) and contralateral (normal) arms of patients with BCRL. The quantitative protocol employs contrast agent (CA) intradermal injections at a lower concentration to prevent T2*-related signal decay. Both protocols provided high-resolution three-dimensional images of upper limb lymphatic vessels. CA uptake curves were utilized to distinguish between lymphatic vessels and vascular structures. The quantitative protocol minimized venous enhancement and avoided spurious delays in lymphatic enhancement due to short T2* values, enabling correct CA uptake characterization. The quantitative protocol was therefore employed to measure the lymphatic fluid velocity, which demonstrated functional differences between abnormal and normal arms. The velocity values were in agreement with previously reported lymphoscintigraphy and near infra-red lymphangiography measurements.Conclusions: This work demonstrated the feasibility of CE-MRL of the upper limbs in patients with BRCL, introducing an advanced imaging and analysis protocol suitable for anatomical and functional study of the lymphatic system.
Purpose: To characterize the voxel-wise uncertainties of Apparent Diffusion Coefficient (ADC) estimation from whole-body diffusion-weighted imaging (WBDWI). This enables the calculation of a new parametric map based on estimates of ADC and ADC uncertainty to improve WBDWI imaging standardization and interpretation: NoIse-Corrected Exponentially-weighted diffusion-weighted MRI (niceDWI). Methods: Three approaches to the joint modeling of voxel-wise ADC and ADC uncertainty (σ ADC) are evaluated: (i) direct weighted least squares (DWLS), (ii) iterative linear-weighted least-squares (IWLS), and (iii) smoothed IWLS (SIWLS). The statistical properties of these approaches in terms of ADC/σ ADC accuracy and precision is compared using Monte Carlo simulations. Our proposed post-processing methodology (niceDWI) is evaluated using an ice-water phantom, by comparing the contrast-to-noise ratio (CNR) with conventional exponentially-weighted DWI. We present the clinical feasibility of niceDWI in a pilot cohort of 16 patients with metastatic prostate cancer. Results: The statistical properties of ADC and σ ADC conformed closely to the theoretical predictions for DWLS, IWLS, and SIWLS fitting routines (a minor bias in parameter estimation is observed with DWLS). Ice-water phantom experiments demonstrated that a range of CNR could be generated using the niceDWI approach, and could improve CNR compared to conventional methods. We successfully implemented the niceDWI technique in our patient cohort, which visually improved the in-plane bias field compared with conventional WBDWI. Conclusions: Measurement of the statistical uncertainty in ADC estimation provides a practical way to standardize WBDWI across different scanners, by providing quantitative image signals that improve its reliability. Our proposed method can overcome inter-scanner and intra-scanner WBDWI signal variations that can confound image interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.