Ribavirin is a nucleotide analog that can be incorporated by viral polymerases, causing mutations by allowing base mismatches. It is currently used therapeutically as an antiviral drug during hepatitis C virus infections. During the amplification of poliovirus genomic RNA or hepatitis C replicons, error frequency is known to increase upon ribavirin treatment. This observation has led to the hypothesis that ribavirin's antiviral activity results from error catastrophe caused by increased mutagenesis of viral genomes. Here, we describe the generation of ribavirin-resistant poliovirus by serial viral passage in the presence of increasing concentrations of the drug. Ribavirin resistance can be caused by a single amino acid change, G64S, in the viral polymerase in an unresolved portion of the fingers domain. Compared with wild-type virus, ribavirinresistant poliovirus displays increased fidelity of RNA synthesis in the absence of ribavirin and increased survival both in the presence of ribavirin and another mutagen, 5-azacytidine. Ribavirin-resistant poliovirus represents an unusual class of viral drug resistance: resistance to a mutagen through increased fidelity.
RNA viruses have high error rates, and the resulting quasispecies may aid survival of the virus population in the presence of selective pressure. Therefore, it has been theorized that RNA viruses require high error rates for survival, and that a virus with high fidelity would be less able to cope in complex environments. We previously isolated and characterized poliovirus with a mutation in the viral polymerase, 3D-G64S, which confers resistance to mutagenic nucleotide analogs via increased fidelity. The 3D-G64S virus was less pathogenic than wild-type virus in poliovirus-receptor transgenic mice, even though only slight growth defects were observed in tissue culture. To determine whether the high-fidelity phenotype of the 3D-G64S virus could decrease its fitness under a defined selective pressure, we compared growth of the 3D-G64S virus and 3D wild-type virus in the context of a revertible attenuating point mutation, 2C-F28S. Even with a 10-fold input advantage, the 3D-G64S virus was unable to compete with 3D wild-type virus in the context of the revertible attenuating mutation; however, in the context of a non-revertible version of the 2C-F28S attenuating mutation, 3D-G64S virus matched the replication of 3D wild-type virus. Therefore, the 3D-G64S high-fidelity phenotype reduced viral fitness under a defined selective pressure, making it likely that the reduced spread in murine tissue could be caused by the increased fidelity of the viral polymerase.
Summary
Enteric viruses, including poliovirus and reovirus, encounter a vast microbial community in the mammalian gastrointestinal tract, which has been shown to promote virus replication and pathogenesis. Investigating the underlying mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion stability and cell attachment by increasing binding to the viral receptor. Additionally, we identified a poliovirus mutant, VP1-T99K, with reduced lipopolysaccharide (LPS) binding. Although T99K and WT poliovirus cell attachment, replication and pathogenesis in mice are equivalent, following peroral inoculation of mice, VP1-T99K poliovirus was unstable in feces. Consequently, the ratio of mutant virus in feces is reduced following additional cycles of infection in mice. Thus, the mutant virus incurs a fitness cost when environmental stability is a factor. These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attachment and environmental stability, potentially promoting transmission to a new host.
Viruses that infect the intestine include major human pathogens (retroviruses, noroviruses, rotaviruses, astroviruses, picornaviruses, adenoviruses, herpesviruses) constituting a major public health problem worldwide. These viral pathogens are members of a large, complex viral community inhabiting the intestine termed the enteric virome. Enteric viruses have intimate functional and genetic relationships with both the host and other microbial constituents that inhabit the intestine, like the bacterial microbiota, their associated phages, helminthes and fungi which together constitute the microbiome. Emerging data indicate that enteric viruses regulate, and are in turn regulated by, these other microbes through a series of processes termed transkingdom interactions. This represents a changing paradigm in intestinal immunity to viral infection. Here we review recent advances in the field and propose new ways in which to conceptualize this important area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.