The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA 15-PDMS110-PMOXA 15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to Ϸ800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (E a) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications.permeability ͉ triblock copolymer ͉ water treatment B iological membranes have excellent water transport characteristics, with certain membranes able to regulate permeability over a wide range. The permeability of membranes such as those present in the proximal tubules of the human kidney (1) can be increased by insertion of specific water-channel membrane proteins known as Aquaporins (AQPs). Other biological membranes, such as those in mammalian optic lenses (2), erythrocytes (3), and many other cell membranes (4) are constitutively AQP-rich. The permeabilities of AQP-rich membranes are orders of magnitude higher than those observed for unmodified phospholipid membranes (5). Additionally, some members of the AQP family have excellent solute retention capabilities for small solutes such as urea, glycerol, and glucose, even at high water transport rates (5, 6). These properties result from the unique structure of the water-selective AQPs. These AQPs have six membrane-spanning domains and a unique hourglass structure (7) with conserved charged residues that form a pore that allows both selective water transport and solute rejection. The AQP used in this study was a bacterial aquaporin from Escherichia coli, Aquaporin Z (AqpZ). AqpZ was selected because it can enhance the permeability of lipid vesicles by an order of magnitude while retaining small uncharged solutes (5). Additionally, AqpZ can be expressed in relatively large quantities in E. coli and has been reported to be quite stable under different reducing conditions and at temperatures of 4°C (5)-properties that make it att...
The participation of organisms related to Rhodocyclus in full-scale enhanced biological phosphorus removal (EBPR) was investigated. By using fluorescent in situ hybridization techniques, the communities of Rhodocyclus-related organisms in two full-scale wastewater treatment plants were estimated to represent between 13 and 18% of the total bacterial population. However, the fractions of these communities that participated in polyphosphate accumulation depended on the type of treatment process evaluated. In a University of Cape Town EBPR process, the percentage of Rhodocyclus-related cells that contained polyphosphate was about 20% of the total bacterial population, but these cells represented as much as 73% of the polyphosphate-accumulating organisms (PAOs). In an aerated-anoxic EBPR process, Rhodocyclus-related PAOs were less numerous, accounting for 6% of the total bacterial population and 26% of the total PAO population. In addition, 16S ribosomal DNA sequences 99.9% similar to the sequences of Rhodocyclus-related organisms enriched in acetate-fed bench-scale EBPR reactors were recovered from both full-scale plants. These results confirmed the involvement of Rhodocyclus-related organisms in EBPR and demonstrated their importance in full-scale processes. In addition, the results revealed a significant correlation between the type of EBPR process and the PAO community.Phosphorus removal from wastewater can be accomplished biologically in activated sludge reactors by incorporating an anaerobic stage prior to existing aerobic basins (10). The resulting cyclic anaerobic and aerobic conditions favor the growth of microorganisms that utilize intracellular polyphosphate as an energy source during the anaerobic period, which allows them to sequester available carbon for use during the following aerobic stage (18). In turn, the aerobic utilization of intracellular stored carbon is accompanied by the uptake of phosphorus and accumulation of phosphorus as polyphosphate. This polyphosphate accumulation results in efficient removal of phosphorus from the wastewater. Although this process, termed enhanced biological phosphorus removal (EBPR), has been used successfully in full-scale wastewater treatment plants (WWTPs), identification and characterization of the industrially relevant organisms that are involved in phosphate uptake have proven to be difficult (18). In the initial attempts to identify polyphosphate-accumulating organisms (PAOs) the workers used enrichment cultures and traditional culturing approaches (5, 9, 16, 25). However, the microorganisms recovered (predominantly Acinetobacter sp.) did not exhibit all the biochemical characteristics believed to be required for cyclic phosphate uptake and release and were later shown, by a variety of culture-independent methods, to be minor components of the microbial communities in full-scale EBPR processes (4,6,12,13,23). Recently, working with acetate-fed laboratory-scale reactors, Hesselmann et al. (11) and Crocetti et al. (7) provided evidence that when an organism cl...
Chlortetracycline and the macrolide tylosin were identified as commonly used antimicrobials for growth promotion and prophylaxis in swine production. Resistance to these antimicrobials was measured throughout the waste treatment processes at five swine farms by culture-based and molecular methods. Conventional farm samples had the highest levels of resistance with both culture-based and molecular methods and had similar levels of resistance despite differences in antimicrobial usage. The levels of resistance in organic farm samples, where no antimicrobials were used, were very low by a culture-based method targeting fecal streptococci. However, when the same samples were analyzed with a molecular method detecting methylation of a specific nucleotide in the 23S rRNA that results in resistance to macrolides, lincosamides, and streptogramin B (MLS B ), an unexpectedly high level of resistant rRNA (approximately 50%) was observed, suggesting that the fecal streptococci were not an appropriate target group to evaluate resistance in the overall microbial community and that background levels of MLS B resistance may be substantial. All of the feed samples tested, including those from the organic farm, contained tetracycline resistance genes. Generally, the same tetracycline resistance genes and frequency of detection were found in the manure and lagoon samples for each commercial farm. The levels of tetracycline and MLS B resistance remained high throughout the waste treatment systems, suggesting that the potential impact of land application of treated wastes and waste treatment by-products on environmental levels of resistance should be investigated further.
Microbial degradation of contaminants in the subsurface requires the availability of nutrients; this is impacted by porous media heterogeneity and the degree of transverse mixing. Two types of microfluidic pore structures etched into silicon wafers (i.e., micromodels), (i) a homogeneous distribution of cylindrical posts and (ii) aggregates of large and small cylindrical posts, were used to evaluate the impact of heterogeneity on growth of a pure culture (Delftia acidovorans) that degrades (R)-2-(2,4-dichlorophenoxy)propionate (R-2,4-DP). Following inoculation, dissolved O2 and R-2,4-DP were introduced as two parallel streams that mixed transverse to the direction of flow. In the homogeneous micromodel, biomass growth was uniform in pore bodies along the center mixing line, while in the aggregate micromodel, preferential growth occurred between aggregates and slower less dense growth occurred throughout aggregates along the center mixing line. The homogeneous micromodel had more rapid growth overall (2 times) and more R-2,4-DP degradation (9.5%) than the aggregate pore structure (5.7%). Simulation results from a pore-scale reactive transport model indicate mass transfer limitations within aggregates along the center mixing line decreased overall reaction; hence, slower biomass growth rates relative to the homogeneous micromodel are expected. Results from this study contribute to a better understanding of the coupling between mass transfer, reaction rates, and biomass growth in complex porous media and suggest successful implementation and analysis of bioremediation systems requires knowledge of subsurface heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.