Towards a novel small animal proton irradiation platformthe SIRMIO project Background: Precision small animal radiotherapy research is a young emerging field aiming to provide new experimental insights into tumour and tissue models in different microenvironments, to unravel the complex mechanisms of radiation damage in target and non-target tissues and assess the efficacy of novel therapeutic strategies. To this end, for photon therapy, modern small animal radiotherapy research platforms have been developed over the last years and are meanwhile commercially available. Conversely, for proton therapy, which holds a great potential for an even superior outcome than photon therapy, no commercial system exists yet. Material and methods: The project SIRMIO (Small Animal Proton Irradiator for Research in Molecular Image-guided Radiation-Oncology) aims at realizing and demonstrating an innovative portable prototype system for precision small animal proton irradiation, suitable for integration at existing clinical treatment facilities. The proposed design combines precise dose application with novel insitu multi-modal anatomical image guidance and in-vivo verification of the actual treatment delivery for precision small animal irradiation. Results and conclusions: This manuscript describes the status of the different components under development, featuring a dedicated beamline for degradation and focusing of clinical proton beams, along with novel detector systems for insitu imaging. The foreseen workflow includes pre-treatment proton transmission imaging for treatment planning and position verification, complemented by ultrasonic tumour localization, followed by image-guided delivery with on-site range verification by means of ionoacoustics (for pulsed beams) and positronemission-tomography (PET, for continuous beams). The proposed compact and cost-effective system promises to open a new era in small animal proton therapy research, contributing to the basic understanding of in-vivo radiation action to identify areas of potential breakthroughs in radiotherapy for future translation into innovative clinical strategies.
The sharp spatial and temporal dose gradients of pulsed ion beams result in an acoustic emission (ionoacoustics), which can be used to reconstruct the dose distribution from measurements at different positions. The accuracy of range verification from ionoacoustic images measured with an ultrasound linear array configuration is investigated both theoretically and experimentally for monoenergetic proton beams at energies relevant for pre-clinical studies (20 and 22 MeV). The influence of the linear sensor array arrangement (length up to 4 cm and number of elements from 5 to 200) and medium properties on the range estimation accuracy are assessed using time-reversal reconstruction. We show that for an ideal homogeneous case, the ionoacoustic images enable a range verification with a relative error lower than 0.1%, however, with limited lateral dose accuracy. Similar results were obtained experimentally by irradiating a water phantom and taking into account the spatial impulse response (geometry) of the acoustic detector during the reconstruction of pressures obtained by moving laterally a single-element transducer to mimic a linear array configuration. Finally, co-registered ionoacoustic and ultrasound images were investigated using silicone inserts immersed in the water phantom across the proton beam axis. By accounting for the sensor response and speed of sound variations (deduced from co-registration with ultrasound images) the accuracy is improved to a few tens of micrometers (relative error less than to 0.5%), confirming the promise of ongoing developments for ionoacoustic range verification in pre-clinical and clinical proton therapy applications.
The evolution of porous silicon (PSi) from its early studies in the late 70’s toward its industrial application in microelectronics is described in this article. The way this material can be integrated now in many devices at a wafer level is shown in this paper through examples of prototypes that include PSi in their fabrication process. For instance, realization of devices on large area wafers in the field of RF passive components, energy micro-sources or porous flexible membranes are described. In this paper, we also show recent advances in the field of PSi etching and integration at an industrial level. In particular, we put an emphasis on reproducibility and homogeneity issues, on the wafer warp management using different annealing procedures.
Accurate knowledge of the exact stopping location of ions inside the patient would allow full exploitation of their ballistic properties for patient treatment. The localized energy deposition of a pulsed particle beam induces a rapid temperature increase of the irradiated volume and leads to the emission of ionoacoustic (IA) waves. Detecting the time-of-flight (ToF) of the IA wave allows inferring information on the Bragg peak location and can henceforth be used for in-vivo range verification. A challenge for IA is the poor signal-to-noise ratio (SNR) at clinically relevant doses and viable machines. We present a frequency-based measurement technique, labeled as ionoacoustic tandem phase detection (iTPD) utilizing lock-in amplifiers. The phase shift of the IA signal to a reference signal is measured to derive the ToF. Experimental IA measurements with a 3.5MHz lead zirconate titanate (PZT) transducer and lock-in amplifiers were performed in water using 22MeV proton bursts. A digital iTPD was performed in-silico at clinical dose levels on experimental data obtained from a clinical facility and secondly, on simulations emulating a heterogeneous geometry. For the experimental setup using 22MeV protons, a localization accuracy and precision obtained through iTPD deviates from a time-based reference analysis by less than 15μm. Several methodological aspects were investigated experimentally in systematic manner. Lastly, iTPD was evaluated in-silico for clinical beam energies indicating that iTPD is in reach of sub-mm accuracy for fractionated doses <5Gy. iTPD can be used to accurately measure the ToF of IA signals online via its phase shift in frequency domain. An application of iTPD to the clinical scenario using a single pulsed beam is feasible but requires further development to reach <1Gy detection capabilities.
PurposeThe Bragg peak located at the end of the ion beam range is one of the main advantages of ion beam therapy compared to X-Ray radiotherapy. However, verifying the exact position of the Bragg peak within the patient online is a major challenge. The goal of this work was to achieve submillimeter proton beam range verification for pulsed proton beams of an energy of up to 220 MeV using ionoacoustics for a clinically relevant dose deposition of typically 2 Gy per fraction by i) using optimal proton beam characteristics for ionoacoustic signal generation and ii) improved signal detection by correlating the signal with simulated filter templates.MethodsA water tank was irradiated with a preclinical 20 MeV proton beam using different pulse durations ranging from 50 ns up to 1 μs in order to maximise the signal-to-noise ratio (SNR) of ionoacoustic signals. The ionoacoustic signals were measured using a piezo-electric ultrasound transducer in the MHz frequency range. The signals were filtered using a cross correlation-based signal processing algorithm utilizing simulated templates, which enhances the SNR of the recorded signals. The range of the protons is evaluated by extracting the time of flight (ToF) of the ionoacoustic signals and compared to simulations from a Monte Carlo dose engine (FLUKA).ResultsOptimised SNR of 28.0 ± 10.6 is obtained at a beam current of 4.5 μA and a pulse duration of 130 ns at a total peak dose deposition of 0.5 Gy. Evaluated ranges coincide with Monte Carlo simulations better than 0.1 mm at an absolute range of 4.21 mm. Higher beam energies require longer proton pulse durations for optimised signal generation. Using the correlation-based post-processing filter a SNR of 17.8 ± 5.5 is obtained for 220 MeV protons at a total peak dose deposition of 1.3 Gy. For this clinically relevant dose deposition and proton beam energy, submillimeter range verification was achieved at an absolute range of 303 mm in water.ConclusionOptimal proton pulse durations ensure an ideal trade-off between maximising the ionoacoustic amplitude and minimising dose deposition. In combination with a correlation-based post-processing evaluation algorithm, a reasonable SNR can be achieved at low dose levels putting clinical applications for online proton or ion beam range verification into reach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.