Endometriosis is a poorly understood gynaecologic disorder that is associated with infertility. In this study, we examined the expression of HOXA10 in the eutopic endometrium of baboons with induced endometriosis. A decrease in HOXA10 mRNA was observed after 3, 6, 12 and 16 months of disease, which reached statistical significance at 12 and 16 months. HOXA10 protein levels were decreased in both the epithelial and stromal cells of the endometrium. Furthermore, expression of beta3 integrin (ITGB3), which is upregulated by HOXA10, was decreased, whereas EMX2, a gene that is inhibited by HOXA10, was increased. Next, methylation patterns of the HOXA10 gene were analysed in the diseased and control animals. The F1 region on the promoter was found to be the most significantly methylated in the endometriosis animals and this may account for the decrease in HOXA10 expression. Finally, we demonstrate that stromal cells from the eutopic endometrium of baboons with endometriosis expressed significantly higher levels of insulin-like growth factor binding protein-1 (IGFBP1) mRNA than disease-free animals in response to estradiol, medroxyprogesterone acetate and dibutyryl cAMP (H + dbcAMP). The functional role of HOXA10 in IGFBP1 expression was further explored using human endometrial stromal cells (HSC). Overexpression of HOXA10 in HSC resulted in a decrease of IGFBP1 mRNA, whereas silencing HOXA10 caused an increase of IGFBP1 mRNA, even in the presence of H + dbcAMP. These data demonstrate that HOXA10 negatively influences IGFBP1 expression in decidualizing cells. Thus, the decrease in HOXA10 levels may in part be involved with the altered uterine environment associated with endometriosis.
Endometriosis is one of the most common causes of chronic pelvic pain and infertility in women in the reproductive age group. Although the existence of this disease has been known for over 100 years our current knowledge of its pathogenesis and the pathophysiology of its related infertility remains unclear. Several reasons contribute to our lack of knowledge, the most critical being the difficulty in carrying out objective long-term studies in women. Thus, we and others have developed a model of this disease in the non-human primate, the baboon (Papio anubis). Intraperitoneal inoculation of autologous menstrual endometrium results in the development of endometriotic lesions with gross morphological characteristics similar to those seen in the human. Multiple factors have been implicated in endometriosis-associated infertility. We have described aberrant levels of factors involved in multiple pathways important in the establishment of pregnancy, in the endometrium of baboons induced with endometriosis. Specifically, we have observed dysregulation of proteins involved in invasion, angiogenesis, methylation, cell growth, immunomodulation, and steroid hormone action. These data suggest that, in an induced model of endometriosis in the baboon, an increased angiogenic capacity, decreased apoptotic potential, progesterone resistance, estrogen hyper-responsiveness, and an inability to respond appropriately to embryonic signals contribute to the reduced fecundity associated with this disease.
This study examines the distribution of estrogen receptors (ESR), progesterone receptors (Pgr), and the chaperone immunophilin FKBP52 in the eutopic endometrium in a baboon model of endometriosis during the window of receptivity to determine if their aberrant distribution contributes to reduced fecundity. Endometriosis was induced by inoculation of menstrual endometrium into the peritoneal cavity. Eutopic endometrium was collected at 3, 6, 9, 12, and 15 months postinoculation. Western blot (WB) and immunohistochemical analyses were performed. Isolated endometrial stromal cells were cultured in the presence or absence of steroid hormones. In animals with endometriosis, ESR-1 (ER-alpha) decreased in endometrial stromal cells, while ESR-2 (ER-beta) was reduced in both glandular epithelial (GE) and stromal cells. Immunoreactive total Pgr was markedly diminished in the GE, which was confirmed by WB analysis. Furthermore, treatment of isolated stromal cells from baboons with endometriosis with hormones did not increase levels of PRA or PRB as in control baboons. FKBP52 was also reduced in the eutopic endometrium of baboons with endometriosis. Endometriosis results in an aberrant distribution of ESR-1, ESR-2, Pgr, and FKBP52 in the eutopic endometrium. The authors propose that a dysregulation in the paracrine signaling between the endometrial stromal and GE cells reduces the responsiveness of Pgr, creating an endometrial environment that is unsuitable for implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.