Objective. To use functional magnetic resonance imaging (fMRI) to evaluate the pattern of cerebral activation during the application of painful pressure and determine whether this pattern is augmented in patients with fibromyalgia (FM) compared with controls.Methods. Pressure was applied to the left thumbnail beds of 16 right-handed patients with FM and 16 right-handed matched controls. Each FM patient underwent fMRI while moderately painful pressure was being applied. The functional activation patterns in FM patients were compared with those in controls, who were tested under 2 conditions: the "stimulus pressure control" condition, during which they received an amount of pressure similar to that delivered to patients, and the "subjective pain control" condition, during which the intensity of stimulation was increased to deliver a subjective level of pain similar to that experienced by patients.Results. Stimulation with adequate pressure to cause similar pain in both groups resulted in 19 regions of increased regional cerebral blood flow in healthy controls and 12 significant regions in patients. Increased fMRI signal occurred in 7 regions common to both groups, and decreased signal was observed in 1 common region. In contrast, stimulation of controls with the same amount of pressure that caused pain in patients resulted in only 2 regions of increased signal, neither of which coincided with a region of activation in patients. Statistical comparison of the patient and control groups receiving similar stimulus pressures revealed 13 regions of greater activation in the patient group. In contrast, similar stimulus pressures produced only 1 region of greater activation in the control group.Conclusion. The fact that comparable subjectively painful conditions resulted in activation patterns that were similar in patients and controls, whereas similar pressures resulted in no common regions of activation and greater effects in patients, supports the hypothesis that FM is characterized by cortical or subcortical augmentation of pain processing.Fibromyalgia (FM) is characterized by chronic widespread pain (involving all 4 quadrants of the body as well as the axial skeleton) and diffuse tenderness (1). Population-based studies have demonstrated that FM affects ϳ2-4% of the population, with a very similar prevalence in at least 5 industrialized countries (2,3). The etiology of FM remains elusive, although there is support for the notion that altered central pain processing is a factor in the presentation of this disease. The development of functional brain imaging techniques provides an opportunity to examine central pain processing in patients with FM.Although the clinical diagnosis of FM is based on detecting 11 of 18 tender points (regions that are painful when manually palpated with 4 kg of pressure), increased sensitivity to pressure in this condition extends beyond tender points and involves the entire body (4-7). In aggregate, psychophysical studies demonstrate that patients with FM and control subjects generally dete...
Functional magnetic resonance imaging of brain responses to biological motion in children with autism spectrum disorder (ASD), unaffected siblings (US) of children with ASD, and typically developing (TD) children has revealed three types of neural signatures: (i) state activity, related to the state of having ASD that characterizes the nature of disruption in brain circuitry; (ii) trait activity, reflecting shared areas of dysfunction in US and children with ASD, thereby providing a promising neuroendophenotype to facilitate efforts to bridge genomic complexity and disorder heterogeneity; and (iii) compensatory activity, unique to US, suggesting a neural systemlevel mechanism by which US might compensate for an increased genetic risk for developing ASD. The distinct brain responses to biological motion exhibited by TD children and US are striking given the identical behavioral profile of these two groups. These findings offer far-reaching implications for our understanding of the neural systems underlying autism.endophenotype | functional magnetic resonance imaging
These results indicate that a relatively short-term intervention program can produce measurable improvements in the face recognition skills of children with autism. As a treatment for face processing deficits, the Let's Face It! program has advantages of being cost-free, adaptable to the specific learning needs of the individual child and suitable for home and school applications.
Although it has been well established that individuals with autism exhibit difficulties in their face recognition abilities, it has been debated whether this deficit reflects a category-specific impairment of faces or a general perceptual bias toward the local level information in a stimulus. In this study, the Let’s Face It! Skills Battery (Tanaka & Schultz, 2008) of developmental face and object processing measures was administered to a large sample of children diagnosed with autism spectrum disorder (ASD) and typical developing (TD) children. The main finding was that when matched for age and IQ, individuals with ASD were selectively impaired in their ability to recognize faces across changes in orientation, expression and featural information. In a face discrimination task, ASD participants showed a preserved ability to discriminate featural and configural information in the mouth region of a face, but were compromised in their ability to discriminate featural and configural information in the eyes. On object processing tasks, ASD participants demonstrated a normal ability to recognize automobiles across changes in orientation and a superior ability to discriminate featural and configural information in houses. These findings indicate that the face processing deficits in ASD are not due to a local processing bias, but reflect a category-specific impairment of faces characterized by a failure to form view-invariant face representations and discriminate information in the eye region of the face.
Background Although impaired social-emotional ability is a hallmark of autism spectrum disorder (ASD), the perceptual skills and mediating strategies contributing to the social deficits of autism are not well understood. A perceptual skill that is fundamental to effective social communication is the ability to accurately perceive and interpret facial emotions. To evaluate the expression processing of participants with ASD, we designed the Let's Face It! Emotion Skills Battery (LFI! Battery), a computer-based assessment composed of three subscales measuring verbal and perceptual skills implicated in the recognition of facial emotions. Methods We administered the LFI! battery to groups of participants with ASD and typically developing control (TDC) participants that were matched for age and IQ. Results On the NameGame labeling task, participants with ASD (N = 68) performed on par with TDC individuals (N = 66) in their ability to name the facial emotions of happy, sad, disgust and surprise and were only impaired in their ability to identify the angry expression. On the Matchmaker Expression task that measures the recognition of facial emotions across different facial identities, the ASD participants (N = 66) performed reliably worse than TDC participants (N = 67) on the emotions of happy, sad, disgust, frighten and angry. In the Parts/Wholes test of perceptual strategies of expression, the TDC participants (N = 67) displayed more holistic encoding for the eyes than the mouths in expressive faces whereas ASD participants (N = 66) exhibited the reverse pattern of holistic recognition for the mouth and analytic recognition of the eyes. Conclusion In summary, findings from Let's Face It! Emotion Skills Battery show that participants with ASD were able to label the basic facial emotions (with the exception of angry expression) on par with age- and IQ-matched typically developing participants. However, participants with ASD were impaired in their ability to generalize facial emotions across different identities and a tendency to recognize the mouth feature holistically and the eyes as isolated parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.