Mitochondrial disease, once thought to be a rare clinical entity, is now recognized as an important cause of a wide range of neurological, cardiac, muscle and endocrine disorders [1–3]. The incidence of disorders of the respiratory chain alone is estimated to be about 1 per 4–5,000 live births, similar to that of more well-known neurological diseases [4, 5]. High-energy requiring tissues are uniquely dependent on the energy delivered by mitochondria, and therefore have the lowest threshold for displaying symptoms of mitochondrial disease. Thus, mitochondrial dysfunction most commonly affects function of the central nervous system, the heart and the muscular system [1, 3, 4]. Mutations in mitochondrial proteins cause striking clinical features in those tissues types, including encephalopathies, seizures, cerebellar ataxias, cardiomyopathies, myopathies, as well as gastrointestinal and hepatic disease. Our knowledge of the contribution of mitochondria in causing disease or influencing aging is expanding rapidly [4, 5]. As diagnosis and treatment improves for children with mitochondrial diseases, it has become increasingly common for them to undergo surgeries for their long-term care. In addition, often a muscle biopsy or other tests needing anesthesia are required for diagnosis. Mitochondrial disease represents probably hundreds of different defects, both genetic and environmental in origin, and is thus difficult to characterize. The specter of possible delayed complications in patients caused by inhibition of metabolism by anesthetics, by remaining in a biochemically stressed state such as fasting/catabolism, or by prolonged exposure to pain is a constant worry to physicians caring for these patients. Here, we review the considerations when caring for a patient with mitochondrial disease.
The Cormack-Lehane views attained using the GlideScope and the Truview PCD video laryngoscopes were not superior to views attained using direct laryngoscopy. Visualization with the GlideScope was significantly worse than with direct laryngoscopy. Use of the GlideScope and Truview PCD systems should be restricted to patients with specific indications.
The field of minimally invasive neurosurgery has evolved rapidly in its indications and applications over the last few years. New, less invasive techniques with low morbidity and virtually no mortality are replacing conventional neurosurgical procedures. Providing anesthesia for these procedures differs in many ways from conventional neurosurgical operations. Anesthesiologists are faced with the perioperative requirements and risks of newly developed procedures. This review calls attention to the anesthetic issues in various minimally invasive neurosurgical procedures for cranial and spinal indications. Among the procedures specifically discussed are endoscopic third ventriculostomy, endoscopic transsphenoidal hypophysectomy, endoscopic strip craniectomy, deep brain stimulation, video-assisted thorascopic surgery, vertebroplasty and kyphoplasty, cervical discectomy and foraminectomy, and laparoscopically assisted lumbar spine surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.