Aim: Gluten-free diet has shown promising effects in preventing type 1 diabetes (T1D) in animals as well as beneficial effects on the immune system. Gluten-free diet at diabetes onset may alter the natural course and outcome of autoimmune diseases such as T1D. Methods:In a 12-month study, 15 children newly diagnosed with T1D were instructed to follow a gluten-free diet. Questionnaires were used to evaluate adherence to the gluten-free diet. Partial remission (PR) was defined by insulin dose-adjusted A1c (IDAA1c) ≤9 or stimulated C-peptide (SCP) >300 pmol/L measured 90 min after a liquid mixed meal at the inclusion, six and 12 months after onset. The intervention group was compared with two previous cohorts. Linear mixed models were used to estimate differences between cohorts.Results: After 6 months, more children on a gluten-free diet tended to have SCP values above 300 pmol/L compared to the European cohort (p = 0.08). The adherence to a gluten-free diet decreased during the 12-month study period. After 1 year there was no difference in SCP levels or percentage in remission according to SCP (p > 0.1). Three times as many children were still in PR based on IDAA1c (p < 0.05). Twelve months after onset HbA1c were 21 % lower and IDAA1c >1 unit lower in the cohort on a gluten-free diet compared to the two previous cohorts (p < 0.001). Conclusion:Gluten-free diet is feasible in highly motivated families and is associated with a significantly better outcome as assessed by HbA1c and IDAA1c. This finding needs confirmation in a randomized trial including screening for quality of life. (Clinicaltrials.gov number NCT02284815).
BackgroundType 1 Diabetes (T1D) has a negative impact on psychological and overall well-being. Screening for Health-related Quality of Life (HrQoL) and addressing HrQoL issues in the clinic leads to improved well-being and metabolic outcomes. The aim of this study was to translate the generic and diabetes-specific validated multinational DISABKIDS® questionnaires into Danish, and then determine their validity and reliability.MethodsThe questionnaires were translated using a validated translation procedure and completed by 99 children and adolescents from our diabetes-department; all diagnosed with T1D and were aged between 8 and 18 years old. The Rasch and the graphical log linear Rasch model (GLLRM) were used to determine validity. Monte Carlo methods and Cronbach’s α were used to confirm reliability.ResultsThe data did not fit a pure Rasch model but did fit a GLLRM when item six in the independence scale is excluded. The six subscales measure different aspects of HrQoL indicating that all the subscales are necessary. The questionnaire shows local dependency between items and differential item functioning (DIF). Therefore age, gender, and glycated hemoglobin (HbA1c) levels must be taken into account when comparing HrQoL between groups.ConclusionsThe Danish versions of the DISABKIDS® chronic-generic and diabetes-specific modules provide valid and objective measurements with adequate reliability. These Danish versions are useful tools for evaluating HrQoL in Danish patients with T1D. However, guidelines on how to manage DIF and local independence will be required, and item six should be rephrased.Electronic supplementary materialThe online version of this article (doi:10.1186/s12955-017-0618-8) contains supplementary material, which is available to authorized users.
(1) Background: Iron requirement increases during pregnancy and iron supplementation is therefore recommended in many countries. However, excessive iron intake may lead to destruction of pancreatic β-cells. Therefore, we aim to test if higher neonatal iron content in blood is associated with the risk of developing type 1 diabetes mellitus (T1D) in childhood; (2) Methods: A case-control study was conducted, including 199 children diagnosed with T1D before the age of 16 years from 1991 to 2005 and 199 controls matched on date of birth. Information on confounders was available in 181 cases and 154 controls. Iron was measured on a neonatal single dried blood spot sample and was analyzed by laser ablation inductively coupled plasma mass spectrometry. Multivariate logistic regression was used to evaluate if iron content in whole blood was associated with the risk of T1D; (3) Results: A doubling of iron content increased the odds of developing T1D more than two-fold (odds ratio (95% CI), 2.55 (1.04; 6.24)). Iron content increased with maternal age (p = 0.04) and girls had higher content than boys (p = 0.01); (4) Conclusions: Higher neonatal iron content associates to an increased risk of developing T1D before the age of 16 years. Iron supplementation during early childhood needs further investigation, including the causes of high iron in neonates.
The risk of developing T1D in Danish children was not associated with perinatal zinc status nor age at onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.