Bees acquire carbohydrates from nectar and lipids; and amino acids from pollen, which also contains polysaccharides including cellulose, hemicellulose, and pectin. These potential energy sources could be degraded and fermented through microbial enzymatic activity, resulting in short chain fatty acids available to hosts. However, the contributions of individual microbiota members to polysaccharide digestion have remained unclear. Through analysis of bacterial isolate genomes and a metagenome of the honey bee gut microbiota, we identify thatBifidobacteriumandGilliamellaare the principal degraders of hemicellulose and pectin. BothBifidobacteriumandGilliamellashow extensive strain-level diversity in gene repertoires linked to polysaccharide digestion. Strains from honey bees possess more such genes than strains from bumble bees. InBifidobacterium, genes encoding carbohydrate-active enzymes are colocated within loci devoted to polysaccharide utilization, as inBacteroidesfrom the human gut. Carbohydrate-active enzyme-encoding gene expressions are up-regulated in response to particular hemicelluloses both in vitro and in vivo. Metabolomic analyses document that bees experimentally colonized by different strains generate distinctive gut metabolomic profiles, with enrichment for specific monosaccharides, corresponding to predictions from genomic data. The other 3 core gut species clusters (Snodgrassellaand 2Lactobacillusclusters) possess few or no genes for polysaccharide digestion. Together, these findings indicate that strain composition within individual hosts determines the metabolic capabilities and potentially affects host nutrition. Furthermore, the niche specialization revealed by our study may promote overall community stability in the gut microbiomes of bees.
The ecological specialization of parasites–whether they can obtain high fitness on very few or very many different host species–is a determining feature of their ecology. In order to properly assess specialization, it is imperative to measure parasite fitness across host species; to understand its origins, fitness must be decomposed into the underlying traits. Despite the omnipresence of parasites with multiple hosts, very few studies assess and decompose their specialization in this way. To bridge this gap, we quantified the infectivity, virulence, and transmission rate of two parasites, the horizontally transmitted microsporidians Anostracospora rigaudi and Enterocytospora artemiae, in their natural hosts, the brine shrimp Artemia parthenogenetica and Artemia franciscana. Our results demonstrate that each parasite performs well on one of the two host species (A. rigaudi on A. parthenogenetica, and E. artemiae on A. franciscana), and poorly on the other. This partial specialization is driven by high infectivity and transmission rates in the preferred host, and is associated with maladaptive virulence and large costs of resistance in the other. Our study represents a rare empirical contribution to the study of parasite evolution in multihost systems, highlighting the negative effects of under‐ and overexploitation when adapting to multiple hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.