Chronological aging is defined as a time-dependent decline of tissue homeostasis which severely impacts skin. Understanding the mechanisms of skin aging is an active research area limited by the lack of relevant in vitro models. Being a component of aging, replicative or stress-induced senescence is repeatedly used to mimic skin aging in vitro, thus presenting only a partial view of the complexity of aging. Herein, we aimed to clarify whether primary normal human dermal fibroblasts retained age-related characteristics when cultured in 2D monolayer, and could be used as a relevant model for aging research. We compared three groups of fibroblasts isolated from different aged donors. We observed strongly decreased population doubling capacities, a reduced clonogenic ability, an impairment in extracellular matrix production together with modifications of respiratory metabolism with an increase in age. These disruptions were particularly marked when comparing fibroblasts isolated from old individuals (over 70 years old) to those isolated from young individuals (18–37 years old), while cells from middle-aged donors exhibited an intermediate profile. These alterations of cell features can be related to the signs of dermis aging, thus showing that cultured primary cells indeed retain some characteristics of the original tissue from which they were extracted.
Humankind has always been intrigued by death, as illustrated by the eternal quest for the fountain of youth. Aging is a relentless biological process slowly progressing as life cycle proceeds. Indeed, aging traduces an accumulation of physiological changes over time that render organisms more likely to die. Thus, despite our mastery of advanced technologies and robust medical knowledge, defining the molecular basis of aging to control lifespan is still currently one of the greatest challenges in biology. In mammals, the skin is the ultimate multitasker vital organ, protecting organisms from the world they live in. As a preferential interface with the environment, the skin is reflecting the internal physiological balances. The maintenance of these balances, called homeostasis, depends on the concurrent assimilation of diversified signals at the cellular level. MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression by mRNAs degradation or translational repression. Their relatively recent discovery in 2000 provided new insights into the understanding of the gene regulatory networks. In this chapter, we focused on the role of three miRNA families, namely miR-30, miR-200, and miR-181, playing a key role in the progression of the skin aging process, with particular input in mechanistic considerations related to autophagy, oxidative stress, and mitochondrial homeostasis.
Chronological aging is characterized by an alteration in the genes’ regulatory network. In human skin, epidermal keratinocytes fail to differentiate properly with aging, leading to the weakening of the epidermal function. MiR-30a is particularly overexpressed with epidermal aging, but the downstream molecular mechanisms are still uncovered. The aim of this study was to decipher the effects of miR-30a overexpression in the human epidermis, with a focus on keratinocyte differentiation. We formally identified the mitophagy receptor BNIP3L as a direct target of miR-30a. Using a 3D organotypic model of reconstructed human epidermis overexpressing miR-30a, we observed a strong reduction in BNIP3L expression in the granular layer. In human epidermal sections of skin biopsies from donors of different ages, we observed a similar pattern of BNIP3L decreasing with aging. Moreover, human primary keratinocytes undergoing differentiation in vitro also showed a decreased expression of BNIP3L with age, together with a retention of mitochondria. Moreover, aging is associated with altered mitochondrial metabolism in primary keratinocytes, including decreased ATP-linked respiration. Thus, miR-30a is a negative regulator of programmed mitophagy during keratinocytes terminal differentiation, impairing epidermal homeostasis with aging.
Although it is well established that 5 to 15% of radiotherapy patients exhibit severe side-effects in non-cancerous tissues, the molecular mechanisms involved are still poorly known, and the links between cellular and tissue radiosensitivity are still debated. We here studied fibroblasts from non-irradiated skin of patients with severe sequelae of radiotherapy, to determine whether specific basal cell activities might be involved in susceptibility to side-effects in normal tissues. Compared to control cells, patient fibroblasts exhibited higher radiosensitivity together with defects in DNA repair. Transcriptome profiling of dermal fibroblasts from 16 radiotherapy patients with severe side-effects and 8 healthy individuals identified 540 genes specifically deregulated in the patients. Nuclear factor of activated T cells 2 (NFATC2) was the most differentially expressed gene, poorly expressed at both transcript and protein level, whereas the NFATC2 gene region was hypermethylated. Furthermore, NFATC2 expression correlated with cell survival after irradiation. Finally, silencing NFATC2 in normal cells by RNA interference led to increased cellular radiosensitivity and defects in DNA repair. This study demonstrates that patients with clinical hypersensitivity also exhibit intrinsic cellular radiosensitivity in their normal skin cells. It further reveals a new role for NFATC2 as a potential regulator of cellular sensitivity to ionizing radiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.