1 Little is known about the cellular effects induced by 3,4-methylenedioxymethamphetamine (MDMA, ecstasy), although changes in gene expression have been observed following treatments with other psychostimulants. Thus, the aim of this study was to investigate in mice, the relationships between the ras-dependent protein kinase ERK and MDMA-induced reinforcement using the conditioned place preference (CPP) and locomotor activity measurements. This was completed using real-time quantitative PCR method by a study of immediate early-genes (IEGs) transcription known to be involved in neuronal plasticity. 2 A significant CPP was observed after repeated MDMA treatment in CD-1 mice at a dose of 9 mg kg À1 i.p. but not at 3 and 6 mg kg À1 . This rewarding effect was abolished by the selective inhibitor of ERK activation, SL327 (50 mg kg À1 ; i.p.). Similar results were obtained on MDMA-induced locomotor activity, clearly suggesting a role of ERK pathway in these behavioral responses.3 Following acute i.p. injection, MDMA induced a strong c-fos transcription in brain structures, such as caudate putamen, nucleus accumbens and hippocampus, whereas egr-1 and egr-3 transcripts were only increased in the caudate putamen. MDMA-induced IEGs transcription was selectively suppressed by SL327 in the caudate putamen, suggesting a role for other signaling pathways in regulation of IEGs transcription in the other brain structures. In agreement with these results, MDMA-induced c-fos protein expression was blocked by SL327 in the caudate putamen. 4 This study confirms and extends to mice the reported role of ERK pathway in the development of addiction-like properties of MDMA. This could facilitate studies about the molecular mechanism of this process by using mutant mice.
3,4-Methylenedioxymethamphetamine (ecstasy), a widely used recreational drug with psychoactive properties, induces both serotonin and dopamine release in the brain. However, little is known about its intracellular effects. We previously showed that 3,4-methylenedioxymethamphetamine rewarding effects in mice were dependent upon extracellular signal-regulated kinase activation and that dorsal striatum was a critical region for mediating extracellular signal-regulated kinase-dependent Egr1 3,4-methylenedioxymethamphetamine-induced transcription. Here, we extend these findings by showing that 3,4-methylenedioxymethamphetamine is indeed able to activate extracellular signal-regulated kinase within this structure. To identify genes regulated by acute 3,4-methylenedioxymethamphetamine in the mice dorsal striatum, and selectively controlled by this kinase, we performed microarray experiments by using a selective inhibitor of extracellular signal-regulated kinase activation, SL327. Of the approximately 24,000 genes from the microarray, 27 showed altered expression after exposure to 3,4-methylenedioxymethamphetamine, and among these, 59% were partially or totally inhibited by SL327 pretreatment. Our results showed that the genes regulated by 3,4-methylenedioxymethamphetamine encode proteins that belong to transcription factors family, signaling pathways (phosphatases, cytoskeleton regulation), and synaptic functions. These early changes, and especially those controlled by extracellular signal-regulated kinase activation might play significant roles in the expression of many of the behaviors that occur following 3,4-methylenedioxymethamphetamine taking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.