Pest and pathogen losses jeopardise global food security and ever since the 19th century Irish famine, potato late blight has exemplified this threat. The causal oomycete pathogen, Phytophthora infestans, undergoes major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to document the emergence of a lineage, termed 13_A2, in the European P. infestans population, and its rapid displacement of other lineages to exceed 75% of the pathogen population across Great Britain in less than three years. We show that isolates of the 13_A2 lineage are among the most aggressive on cultivated potatoes, outcompete other aggressive lineages in the field, and overcome previously effective forms of plant host resistance. Genome analyses of a 13_A2 isolate revealed extensive genetic and expression polymorphisms particularly in effector genes. Copy number variations, gene gains and losses, amino-acid replacements and changes in expression patterns of disease effector genes within the 13_A2 isolate likely contribute to enhanced virulence and aggressiveness to drive this population displacement. Importantly, 13_A2 isolates carry intact and in planta induced Avrblb1, Avrblb2 and Avrvnt1 effector genes that trigger resistance in potato lines carrying the corresponding R immune receptor genes Rpi-blb1, Rpi-blb2, and Rpi-vnt1.1. These findings point towards a strategy for deploying genetic resistance to mitigate the impact of the 13_A2 lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics.
• A detailed molecular understanding of how oomycete plant pathogens evade disease resistance is essential to inform the deployment of durable resistance (R) genes. • Map-based cloning, transient expression in planta, pathogen transformation and DNA sequence variation across diverse isolates were used to identify and characterize PiAVR2 from potato late blight pathogen Phytophthora infestans. • PiAVR2 is an RXLR-EER effector that is up-regulated during infection, accumulates at the site of haustoria formation, and is recognized inside host cells by potato protein R2. Expression of PiAVR2 in a virulent P. infestans isolate conveys a gain-of-avirulence phenotype, indicating that this is a dominant gene triggering R2-dependent disease resistance. PiAVR2 presence/absence polymorphisms and differential transcription explain virulence on R2 plants. Isolates infecting R2 plants express PiAVR2-like, which evades recognition by R2. PiAVR2 and PiAVR2-like differ in 13 amino acids, eight of which are in the C-terminal effector domain; one or more of these determines recognition by R2. Nevertheless, few polymorphisms were observed within each gene in pathogen isolates, suggesting limited selection pressure for change within PiAVR2 and PiAVR2-like. • Our results direct a search for R genes recognizing PiAVR2-like, which, deployed with R2, may exert strong selection pressure against the P. infestans population.
The oomycete Phytophthora infestans is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by P. infestans. We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in P. infestans inhibits infection of potato, indicating a role in host penetration. The identification of LPMOs as virulence factors in pathogenic oomycetes opens up opportunities in crop protection and food security.
Prior to 2007, late blight was not reported as a serious threat to tomato cultivation in India although the disease has been known on potato since 1953. During the July–December cropping season of 2009 and 2010, severe late blight epidemics were observed in Karnataka state of India, causing crop losses up to 100%. Nineteen Phytophthora isolates, recovered from late blight affected tomato tissues from different localities in Karnataka state between 2009 and 2010, were identified as Phytophthora infestans based on morphology, a similarity search of ITS sequences at GenBank and species‐specific PCR using PINF/ITS5 primer pair. The isolates were further assessed for metalaxyl sensitivity, mating type, mitochondrial DNA (mtDNA) haplotype, DNA fingerprinting patterns based on simple sequence repeats (SSR) and RFLPs using the RG57 probe and aggressiveness on tomato. All isolates were metalaxyl resistant, A2 mating type, mtDNA haplotype Ia and had identical SSR and RG57 fingerprints and highly aggressive on tomato. The phenotypic and genotypic characters of isolates examined in this study were found to be similar to that of 13_A2 genotype of P. infestans population reported in Europe. Thus, appearance of new population similar to 13_A2 genotype was responsible for severe late blight epidemics on tomato in South‐West India.
The gene encoding RNA-dependent RNA polymerase 1 (RDR1) is involved in basal resistance to several viruses. Expression of the RDR1 gene also is induced in resistance to Tobacco mosaic virus (TMV) mediated by the N gene in tobacco (Nicotiana tabacum cv. Samsun NN) in an incompatible hypersensitive response, as well as in a compatible response against Potato virus Y (PVY). Reducing the accumulation of NtRDR1 transcripts by RNA inhibition mediated by transgenic expression of a double-stranded RNA hairpin corresponding to part of the RDR1 gene resulted in little or no induction of accumulation of RDR1 transcripts after infection by PVY. Plants with lower accumulation of RDR1 transcripts showed much higher accumulation levels of PVY. Reduced accumulation of NtRDR1 transcripts also resulted in lower or no induced expression of three other antiviral, defense-related genes after infection by PVY. These genes encoded a mitochondrial alternative oxidase, an inhibitor of virus replication (IVR), and a transcription factor, ERF5, all involved in resistance to infection by TMV, as well as RDR6, involved in RNA silencing. The extent of the effect on the induced NtIVR and NtERF5 genes correlated with the extent of suppression of the NtRDR1 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.