Ternary semiconductor nanowire arrays enable scalable fabrication of nano-optoelectronic devices with tunable bandgap. However, the lack of insight into the effects of the incorporation of Vy element results in lack of control on the growth of ternary III-V(1-y)Vy nanowires and hinders the development of high-performance nanowire devices based on such ternaries. Here, we report on the origins of Sb-induced effects affecting the morphology and crystal structure of self-catalyzed GaAsSb nanowire arrays. The nanowire growth by molecular beam epitaxy is changed both kinetically and thermodynamically by the introduction of Sb. An anomalous decrease of the axial growth rate with increased Sb2 flux is found to be due to both the indirect kinetic influence via the Ga adatom diffusion induced catalyst geometry evolution and the direct composition modulation. From the fundamental growth analyses and the crystal phase evolution mechanism proposed in this Letter, the phase transition/stability in catalyst-assisted ternary III-V-V nanowire growth can be well explained. Wavelength tunability with good homogeneity of the optical emission from the self-catalyzed GaAsSb nanowire arrays with high crystal phase purity is demonstrated by only adjusting the Sb2 flux.
Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibilities for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode and room-temperature lasing from 890 to 990 nm, utilizing a novel design of single nanowires with GaAsSb-based multiple axial superlattices as a gain medium under optical pumping. The control of lasing wavelength via compositional tuning with excellent room-temperature lasing performance is shown to result from the unique nanowire structure with efficient gain material, which delivers a low lasing threshold of ∼6 kW/cm (75 μJ/cm per pulse), a lasing quality factor as high as 1250, and a high characteristic temperature of ∼129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way toward future nanoscale integrated optoelectronic systems with superior performance.
We demonstrate GaN nanocolumn growth on fused silica glass by plasma-assisted molecular beam epitaxy. The effect of the substrate temperature, Ga flux and N 2 flow rate on the structural and optical properties are studied. At optimum growth conditions, GaN nanocolumns are vertically aligned and well separated with an average diameter, height and density of 72 nm, 1.2 μm and 1.6 × 10 9 cm −2, respectively. The nanocolumns exhibit wurtzite crystal structure with no threading dislocations, stacking faults or twinning and grow in the [0 0 0 1] direction. At the interface adjacent to the glass, there is a few atom layers thick intermediate phase with ABC stacking order (zinc blende). Photoluminescence measurements evidence intense and narrow excitonic emissions, along with the absence of any defect-related zinc blende and yellow luminescence emission.
The performance of GaAs nanowire (NW) devices depends critically on the presence of crystallographic defects in the NWs such as twinning planes and stacking faults, and considerable effort has been devoted to understanding and preventing the occurrence of these. For self-catalysed GaAs NWs grown by molecular beam epitaxy (MBE) in particular, there are in addition other types of defects that may be just as important for NW-based optoelectronic devices. These are the point defects such as the As vacancy and the Ga antisite occurring due to the inherently Ga-rich conditions of the self-catalysed growth. Here we demonstrate experimentally the effects of these point defects on the optical properties of GaAs/AlGaAs core-shell NWs grown by self-catalysed MBE. The present results enable insight into the role of the point defects both on their own and in conjunction with crystallographic planar defects.
GaAs nanowires (NWs) are seen as promising building blocks for future optoelectronic devices. To ensure reproducible properties, a high NW uniformity is required. Here, a substantial number of both position-controlled and randomly grown self-catalyzed GaAs/AlGaAs core-shell NWs are compared. Single NWs are characterized by correlated microphotoluminescence (µ-PL) spectroscopy and transmission electron microscopy (TEM). TEM is done in the 110-and 112-projections, and on the 111-cross-section of the NWs. The position-control grown NWs showed a higher degree of uniformity in morphology. All NWs on both samples had a predominantly stacking fault free zinc blende structure, with a main optical response around the GaAs free exciton energy. However, NW-to-NW structural variations in the tip region and radial compositional variations in the shell are present in both samples. These structural features could be the origin of variations in the optical response just below and above the free exciton energy. This correlated study demonstrates that the observed distinct, sharp PL peaks in the 1.6-1.8 eV energy range present in several NWs, are possibly related to radial compositional variations in the AlGaAs shell rather than the structural defects in the tip region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.