One of the fundamental challenges in the design of perception systems for autonomous vehicles is validating the performance of each algorithm under a comprehensive variety of operating conditions. In the case of vision-based semantic segmentation, there are known issues when encountering new scenarios that are sufficiently different to the training data. In addition, even small variations in environmental conditions such as illumination and precipitation can affect the classification performance of the segmentation model. Given the reliance on visual information, these effects often translate into poor semantic pixel classification which can potentially lead to catastrophic consequences when driving autonomously. This paper presents a novel method for analysing the robustness of semantic segmentation models and provides a number of metrics to evaluate the classification performance over a variety of environmental conditions. The process incorporates an additional sensor (lidar) to automate the process, eliminating the need for labour-intensive hand labelling of validation data. The system integrity can be monitored as the performance of the vision sensors are validated against a different sensor modality. This is necessary for detecting failures that are inherent to vision technology. Experimental results are presented based on multiple datasets collected at different times of the year with different environmental conditions. These results show that the semantic segmentation performance varies depending on the weather, camera parameters, existence of shadows, etc.. The results also demonstrate how the metrics can be used to compare and validate the performance after making improvements to a model, and compare the performance of different networks.
This paper proposes an automated method to obtain the extrinsic calibration parameters between a camera and a 3D lidar with as low as 16 beams. We use a checkerboard as a reference to obtain features of interest in both sensor frames. The calibration board centre point and normal vector are automatically extracted from the lidar point cloud by exploiting the geometry of the board. The corresponding features in the camera image are obtained from the camera's extrinsic matrix. We explain the reasons behind selecting these features, and why they are more robust compared to other possibilities. To obtain the optimal extrinsic parameters, we choose a genetic algorithm to address the highly non-linear state space. The process is automated after defining the bounds of the 3D experimental region relative to the lidar, and the true board dimensions. In addition, the camera is assumed to be intrinsically calibrated. Our method requires a minimum of 3 checkerboard poses, and the calibration accuracy is demonstrated by evaluating our algorithm using real world and simulated features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.