Viruses are known for their extremely compact genomes composed almost entirely of protein-coding genes. Nonetheless, four long noncoding RNAs (lncRNAs) are encoded by human cytomegalovirus (HCMV). Although these RNAs accumulate to high levels during lytic infection, their functions remain largely unknown. Here, we show that HCMV-encoded lncRNA4.9 localizes to the viral nuclear replication compartment, and that its depletion restricts viral DNA replication and viral growth. RNA4.9 is transcribed from the HCMV origin of replication (oriLyt) and forms an RNA-DNA hybrid (R-loop) through its G+C-rich 5' end, which may be important for the initiation of viral DNA replication. Furthermore, targeting the RNA4.9 promoter with CRISPR-Cas9 or genetic relocalization of oriLyt leads to reduced levels of the viral single-stranded DNA-binding protein (ssDBP), suggesting that the levels of ssDBP are coupled to the oriLyt activity. We further identified a similar, oriLyt-embedded, G +C-rich lncRNA in murine cytomegalovirus (MCMV). These results indicate that HCMV RNA4.9 plays an important role in regulating viral DNA replication, that the levels of ssDBP are coupled to the oriLyt activity, and that these regulatory features may be conserved among betaherpesviruses.
Human herpesvirus-6 (HHV-6) A and B are ubiquitous betaherpesviruses, infecting the majority of the human population. They encompass large genomes and our understanding of their protein coding potential is far from complete. Here, we employ ribosome-profiling and systematic transcript-analysis to experimentally define HHV-6 translation products. We identify hundreds of new open reading frames (ORFs), including upstream ORFs (uORFs) and internal ORFs (iORFs), generating a complete unbiased atlas of HHV-6 proteome. By integrating systematic data from the prototypic betaherpesvirus, human cytomegalovirus, we uncover numerous uORFs and iORFs conserved across betaherpesviruses and we show uORFs are enriched in late viral genes. We identified three highly abundant HHV-6 encoded long non-coding RNAs, one of which generates a non-polyadenylated stable intron appearing to be a conserved feature of betaherpesviruses. Overall, our work reveals the complexity of HHV-6 genomes and highlights novel features conserved between betaherpesviruses, providing a rich resource for future functional studies.
The B7 family member, B7H6, is a ligand for the natural killer cell receptor NKp30. B7H6 is hardly expressed on normal tissues, but undergoes upregulation on different types of tumors, implicating it as an attractive target for cancer immunotherapy. The molecular mechanisms that control B7H6 expression are poorly understood. We report that in contrast to other NK cell ligands, endoplasmic reticulum (ER) stress upregulates B7H6 mRNA levels and surface expression. B7H6 induction by ER stress requires protein kinase R-like ER kinase (PERK), one of the three canonical sensors of the unfolded protein response. PERK phosphorylates eIF2α, which regulates protein synthesis and gene expression. Because eIF2α is phosphorylated by several kinases following different stress conditions, the program downstream to eIF2α phosphorylation is called the integrated stress response (ISR). Several drugs were reported to promote the ISR. Nelfinavir and lopinavir, two clinically approved HIV protease inhibitors, promote eIF2α phosphorylation by different mechanisms. We show that nelfinavir and lopinavir sustainably instigate B7H6 expression at their pharmacologically relevant concentrations. As such, ER stress and ISR conditions sensitize melanoma targets to CART cells directed against B7H6. Our study highlights a novel mechanism to induce B7H6 expression and suggests a pharmacological approach to improve B7H6-directed immunotherapy.
In the version of this article initially published, the penultimate sentence of the abstract included a typographical error ('cxgenes'). The correct word is 'genes'. The error has been corrected in the HTML and PDF version of the article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.